Federated Learning and Evolutionary Game Model for Fog Federation Formation

被引:0
|
作者
Yasser, Zyad [1 ]
Hammoud, Ahmad [2 ,3 ,4 ]
Mourad, Azzam [3 ,5 ]
Otrok, Hadi [6 ]
Dziong, Zbigniew [2 ]
Guizani, Mohsen [7 ]
机构
[1] New York Univ, Div Sci, Abu Dhabi, U Arab Emirates
[2] Ecole Technol Super, Dept Elect Engn, Montreal, PQ H3C 1K3, Canada
[3] Lebanese Amer Univ, Artificial Intelligence & Cyber Syst Res Ctr, Beirut 03797751, Lebanon
[4] Mohammad Bin Zayed Univ Artificial Intelligence, Dept Machine Learning, Abu Dhabi, U Arab Emirates
[5] Khalifa Univ, KU 6G Res Ctr, Dept Comp Sci, Abu Dhabi, U Arab Emirates
[6] Khalifa Univ, Ctr Cyber Phys Syst C2PS, Dept Comp Sci, Abu Dhabi, U Arab Emirates
[7] Mohammad Bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
来源
IEEE INTERNET OF THINGS JOURNAL | 2025年 / 12卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Quality of service; Internet of Things; Cloud computing; Servers; Edge computing; Privacy; Genetic algorithms; Games; Federated learning; Accuracy; Cloud federation; evolutionary game theory; federated learning (FL); fog computing; fog federation; Nash equilibrium; ARCHITECTURE;
D O I
10.1109/JIOT.2024.3484357
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we tackle the network delays in the Internet of Things (IoT) for an enhanced Quality of Service (QoS) through a stable and optimized federated fog computing infrastructure. Network delays contribute to a decline in QoS for IoT applications and may even disrupt time-critical functions. This article addresses the challenge of establishing fog federations, which are designed to enhance QoS. However, instabilities within these federations can lead to the withdrawal of providers, thereby diminishing federation profitability and expected QoS. Additionally, the techniques used to form federations could potentially pose data leakage risks to end-users whose data is involved in the process. In response, we propose a stable and comprehensive federated fog architecture that considers federated network profiling of the environment to enhance the QoS for IoT applications. This article introduces a decentralized evolutionary game theoretic algorithm built on the top of a genetic algorithm mechanism that addresses the fog federation formation issue. Furthermore, we present a decentralized federated learning algorithm that predicts the QoS between fog servers without the need to expose users' location to external entities. Such a predictor module enhances the decision-making process when allocating resources during the federation formation phases without exposing the data privacy of the users/servers. Notably, our approach demonstrates superior stability and improved QoS when compared to other benchmark approaches.
引用
收藏
页码:4183 / 4196
页数:14
相关论文
共 50 条
  • [31] Multi-Objective Evolutionary Federated Learning
    Zhu, Hangyu
    Jin, Yaochu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (04) : 1310 - 1322
  • [32] Research on efficient data processing method for fog computing based on blockchain and federated learning
    Kang, Haiyan
    Wu, Bing
    Cao, Yiran
    NEUROCOMPUTING, 2025, 626
  • [33] Communication efficient federated learning with data offloading in fog-based IoT environment
    Kumari, Nidhi
    Jana, Prasanta K.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 158 - 166
  • [34] FLight: A lightweight federated learning framework in edge and fog computing
    Zhu, Wuji
    Goudarzi, Mohammad
    Buyya, Rajkumar
    SOFTWARE-PRACTICE & EXPERIENCE, 2024, 54 (05) : 813 - 841
  • [35] Fog Computing Federated Learning System Framework for Smart Healthcare
    Guo, Yang
    Xie, Xiaolan
    Qin, Chengyou
    Wang, Yueyue
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT I, 2022, 1491 : 133 - 147
  • [36] Privacy-Preserving Aggregation for Federated Learning-Based Navigation in Vehicular Fog
    Kong, Qinglei
    Yin, Feng
    Lu, Rongxing
    Li, Beibei
    Wang, Xiaohong
    Cui, Shuguang
    Zhang, Ping
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (12) : 8453 - 8463
  • [37] RAFLS: RDP-Based Adaptive Federated Learning With Shuffle Model
    Wang, Shuo
    Gai, Keke
    Yu, Jing
    Zhu, Liehuang
    Wu, Hanghang
    Wei, Changzheng
    Yan, Ying
    Zhang, Hui
    Choo, Kim-Kwang Raymond
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2025, 22 (02) : 1181 - 1194
  • [38] A Hybrid Federated Learning Architecture With Online Learning and Model Compression
    Odeyomi, Olusola T.
    Ajibuwa, Opeyemi
    Roy, Kaushik
    IEEE ACCESS, 2024, 12 : 191046 - 191058
  • [39] Securing Fog-enabled IoT: federated learning and generative adversarial networks for intrusion detection
    Lei, Ting
    TELECOMMUNICATION SYSTEMS, 2025, 88 (01)
  • [40] Timely Anomalous Behavior Detection in Fog-IoT Systems using Unsupervised Federated Learning
    Ribeiro Junior, Franklin Magalhaes
    Kamienski, Carlos Alberto
    2022 IEEE 8TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT, 2022,