A Novel Transformer-Based Approach for Adult's Facial Emotion Recognition

被引:0
|
作者
Nawaz, Uzma [1 ]
Saeed, Zubair [2 ,3 ]
Atif, Kamran [4 ]
机构
[1] Natl Univ Sci & Technol, Coll Elect & Mech Engn, Knowledge & Data Sci Res Ctr, Dept Comp & Software Engn, Islamabad 44000, Pakistan
[2] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77840 USA
[3] Texas A&M Univ Qatar, Dept Elect & Comp Engn, Doha, Qatar
[4] Deakin Univ, Dept Civil Engn, Melbourne, Vic 3125, Australia
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Emotion recognition; Transformers; Face recognition; Accuracy; Brain modeling; Real-time systems; Adaptation models; Lighting; Human computer interaction; Facial features; Facial emotion recognition; transformers; deep learning; FER2013; CK plus; AffectNet; AFEW; RAF-DB; emotion recognition; EXPRESSION RECOGNITION;
D O I
10.1109/ACCESS.2025.3555510
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adult facial expression recognition (FER) is essential for human-computer interaction, mental health assessment, and social robotics applications because it improves user experiences and emotional well-being. This study presents a novel attention mechanism-based transformer approach designed to capture detailed patterns in facial features and dynamically focus on the most relevant regions for enhanced accuracy. Unlike conventional deep learning approaches, our method integrates an adaptive attention mechanism and dynamic token pruning, which optimizes computational efficiency while maintaining high accuracy. The model is evaluated on five widely used datasets: FER2013, CK+, AffectNet, RAF-DB, and AFEW. It achieves state-of-the-art performance, with accuracies of 98.67% on FER2013, 99.52% on CK+, 99.3% on AffectNet, 96.3% on AFEW, and 98.45% on RAF-DB. An ablation study further validates the contribution of each model component, and comparisons with CNN-based and transformer-based approaches confirm the effectiveness of the model. These findings establish the proposed method as a significant advancement in FER, which offers a scalable and efficient solution for real-world applications.
引用
收藏
页码:56485 / 56508
页数:24
相关论文
共 50 条
  • [31] Grey Wolf optimisation-based feature selection and classification for facial emotion recognition
    Sreedharan, Ninu Preetha Nirmala
    Ganesan, Brammya
    Raveendran, Ramya
    Sarala, Praveena
    Dennis, Binu
    Boothalingam, Rajakumar R.
    IET BIOMETRICS, 2018, 7 (05) : 490 - 499
  • [32] Emotion Recognition Based on Occluded Facial Expressions
    Ramirez Cornejo, Jadisha Yarif
    Pedrini, Helio
    IMAGE ANALYSIS AND PROCESSING,(ICIAP 2017), PT I, 2017, 10484 : 309 - 319
  • [33] A novel facial emotion recognition scheme based on graph mining
    Hassan, Alia K.
    Mohammed, Suhaila N.
    DEFENCE TECHNOLOGY, 2020, 16 (05) : 1062 - 1072
  • [34] Facial Emotion Recognition Using Context Based Multimodal Approach
    Metri, Priya
    Ghorpade, Jayshree
    Butalia, Ayesha
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2011, 1 (04): : 13 - 16
  • [35] A Novel Facial Emotion Recognition Scheme Based on Graph Mining
    Bedre, Jyoti S.
    Prasanna, P. L.
    SUSTAINABLE COMMUNICATION NETWORKS AND APPLICATION, ICSCN 2021, 2022, 93 : 843 - 853
  • [36] Facial emotion recognition based on deep transfer learning approach
    Aziza Sultana
    Samrat Kumar Dey
    Md. Armanur Rahman
    Multimedia Tools and Applications, 2023, 82 : 44175 - 44189
  • [37] A Swin Transformer-Based Approach for Motorcycle Helmet Detection
    Bouhayane, Ayyoub
    Charouh, Zakaria
    Ghogho, Mounir
    Guennoun, Zouhair
    IEEE ACCESS, 2023, 11 : 74410 - 74419
  • [38] Enhanced Facial Emotion Recognition Using Vision Transformer Models
    Fatima, N. Sabiyath
    Deepika, G.
    Anthonisamy, Arun
    Chitra, R. Jothi
    Muralidharan, J.
    Alagarsamy, Manjunathan
    Ramyasree, Kummari
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2025, 20 (02) : 1143 - 1152
  • [39] Transformer-based approach to variable typing
    Rey, Charles Arthel
    Danguilan, Jose Lorenzo
    Mendoza, Karl Patrick
    Remolona, Miguel Francisco
    HELIYON, 2023, 9 (10)
  • [40] Emotion Recognition of Subjects With Hearing Impairment Based on Fusion of Facial Expression and EEG Topographic Map
    Li, Dahua
    Liu, Jiayin
    Yang, Yi
    Hou, Fazheng
    Song, Haotian
    Song, Yu
    Gao, Qiang
    Mao, Zemin
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 437 - 445