Segmentation of glioblastomas via 3D FusionNet

被引:0
作者
Guo, Xiangyu [1 ]
Zhang, Botao [1 ]
Peng, Yue [1 ]
Chen, Feng [1 ]
Li, Wenbin [1 ]
机构
[1] Capital Med Univ, Beijing Tiantan Hosp, Canc Ctr, Dept Neurooncol, Beijing, Peoples R China
关键词
brain tumor segmentation; MRI; U-net; SegNet; 3D deep learning model; BRAIN-TUMOR; SURVIVAL; NETWORK; MRI;
D O I
10.3389/fonc.2024.1488616
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction This study presented an end-to-end 3D deep learning model for the automatic segmentation of brain tumors.Methods The MRI data used in this study were obtained from a cohort of 630 GBM patients from the University of Pennsylvania Health System (UPENN-GBM). Data augmentation techniques such as flip and rotations were employed to further increase the sample size of the training set. The segmentation performance of models was evaluated by recall, precision, dice score, Lesion False Positive Rate (LFPR), Average Volume Difference (AVD) and Average Symmetric Surface Distance (ASSD).Results When applying FLAIR, T1, ceT1, and T2 MRI modalities, FusionNet-A and FusionNet-C the best-performing model overall, with FusionNet-A particularly excelling in the enhancing tumor areas, while FusionNet-C demonstrates strong performance in the necrotic core and peritumoral edema regions. FusionNet-A excels in the enhancing tumor areas across all metrics (0.75 for recall, 0.83 for precision and 0.74 for dice scores) and also performs well in the peritumoral edema regions (0.77 for recall, 0.77 for precision and 0.75 for dice scores). Combinations including FLAIR and ceT1 tend to have better segmentation performance, especially for necrotic core regions. Using only FLAIR achieves a recall of 0.73 for peritumoral edema regions. Visualization results also indicate that our model generally achieves segmentation results similar to the ground truth.Discussion FusionNet combines the benefits of U-Net and SegNet, outperforming the tumor segmentation performance of both. Although our model effectively segments brain tumors with competitive accuracy, we plan to extend the framework to achieve even better segmentation performance.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Multi-sectional views textural based SVM for MS lesion segmentation in multi-channels MRIs [J].
Abdullah, Bassem A. ;
Younis, Akmal A. ;
John, Nigel M. .
Open Biomedical Engineering Journal, 2012, 6 (01) :56-72
[2]   Improving Breast Cancer Detection and Diagnosis through Semantic Segmentation Using the Unet3+ Deep Learning Framework [J].
Alam, Taukir ;
Shia, Wei-Chung ;
Hsu, Fang-Rong ;
Hassan, Taimoor .
BIOMEDICINES, 2023, 11 (06)
[3]   Adult Glioblastoma [J].
Alexander, Brian M. ;
Cloughesy, Timothy F. .
JOURNAL OF CLINICAL ONCOLOGY, 2017, 35 (21) :2402-+
[4]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[5]   The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics [J].
Bakas, Spyridon ;
Sako, Chiharu ;
Akbari, Hamed ;
Bilello, Michel ;
Sotiras, Aristeidis ;
Shukla, Gaurav ;
Rudie, Jeffrey D. ;
Santamaria, Natali Flores ;
Kazerooni, Anahita Fathi ;
Pati, Sarthak ;
Rathore, Saima ;
Mamourian, Elizabeth ;
Ha, Sung Min ;
Parker, William ;
Doshi, Jimit ;
Baid, Ujjwal ;
Bergman, Mark ;
Binder, Zev A. ;
Verma, Ragini ;
Lustig, Robert A. ;
Desai, Arati S. ;
Bagley, Stephen J. ;
Mourelatos, Zissimos ;
Morrissette, Jennifer ;
Watt, Christopher D. ;
Brem, Steven ;
Wolf, Ronald L. ;
Melhem, Elias R. ;
Nasrallah, MacLean P. ;
Mohan, Suyash ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2022, 9 (01)
[6]  
Bakas Spyridon, 2021, TCIA, DOI 10.7937/TCIA.709X-DN49
[7]   Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in glioblastoma [J].
Beig, Niha ;
Singh, Salendra ;
Bera, Kaustav ;
Prasanna, Prateek ;
Singh, Gagandeep ;
Chen, Jonathan ;
Bamashmos, Anas Saeed ;
Barnett, Addison ;
Hunter, Kyle ;
Statsevych, Volodymyr ;
Hill, Virginia B. ;
Varadan, Vinay ;
Madabhushi, Anant ;
Ahluwalia, Manmeet S. ;
Tiwari, Pallavi .
NEURO-ONCOLOGY, 2021, 23 (02) :251-263
[8]   Radiogenomic-Based Survival Risk Stratification of Tumor Habitat on Gd-T1w MRI Is Associated with Biological Processes in Glioblastoma [J].
Beig, Niha ;
Bera, Kaustav ;
Prasanna, Prateek ;
Antunes, Jacob ;
Correa, Ramon ;
Singh, Salendra ;
Bamashmos, Anas Saeed ;
Ismail, Marwa ;
Braman, Nathaniel ;
Verma, Ruchika ;
Hill, Virginia B. ;
Statsevych, Volodymyr ;
Ahluwalia, Manmeet S. ;
Varadan, Vinay ;
Madabhushi, Anant ;
Tiwari, Pallavi .
CLINICAL CANCER RESEARCH, 2020, 26 (08) :1866-1876
[9]   Clinical capability of modern brain tumor segmentation models [J].
Berkley, Adam ;
Saueressig, Camillo ;
Shukla, Utkarsh ;
Chowdhury, Imran ;
Munoz-Gauna, Anthony ;
Shehu, Olalekan ;
Singh, Ritambhara ;
Munbodh, Reshma .
MEDICAL PHYSICS, 2023, 50 (08) :4943-4959
[10]   Brain metastasis [J].
Boire, Adrienne ;
Brastianos, Priscilla K. ;
Garzia, Livia ;
Valiente, Manuel .
NATURE REVIEWS CANCER, 2020, 20 (01) :4-11