AI predicting recurrence in non-muscle-invasive bladder cancer: systematic review with study strengths and weaknesses

被引:1
作者
Abbas, Saram [1 ]
Shafik, Rishad [1 ]
Soomro, Naeem [2 ]
Heer, Rakesh [3 ,4 ]
Adhikari, Kabita [1 ]
机构
[1] Newcastle Univ, Sch Engn, Newcastle Upon Tyne, England
[2] Freeman Rd Hosp, DEPT UROL, NEWCASTLE UPON TYNE, England
[3] Imperial Coll London, Div Surg, London, England
[4] Newcastle Univ, Ctr Canc, Newcastle Upon Tyne, England
基金
英国工程与自然科学研究理事会;
关键词
artificial intelligence; non-muscle-invasive bladder cancer; NMIBC; machine learning; recurrence; prediction; GENOME-WIDE ASSOCIATION; TRANSURETHRAL RESECTION; UROTHELIAL CARCINOMA; SUSCEPTIBILITY LOCUS; NEURAL-NETWORK; EAU GUIDELINES; RISK-FACTORS; TUMOR; PROGRESSION; VALIDATION;
D O I
10.3389/fonc.2024.1509362
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Non-muscle-invasive Bladder Cancer (NMIBC) is notorious for its high recurrence rate of 70-80%, imposing a significant human burden and making it one of the costliest cancers to manage. Current prediction tools for NMIBC recurrence rely on scoring systems that often overestimate risk and lack accuracy. Machine learning (ML) and artificial intelligence (AI) are transforming oncological urology by leveraging molecular and clinical data to enhance predictive precision. Methods: This comprehensive review critically examines ML-based frameworks for predicting NMIBC recurrence. A systematic literature search was conducted, focusing on the statistical robustness and algorithmic efficacy of studies. These were categorised by data modalities (e.g., radiomics, clinical, histopathological, genomic) and types of ML models, such as neural networks, deep learning, and random forests. Each study was analysed for strengths, weaknesses, performance metrics, and limitations, with emphasis on generalisability, interpretability, and cost-effectiveness. Results: ML algorithms demonstrate significant potential, with neural networks achieving accuracies of 65-97.5%, particularly with multi-modal datasets, and support vector machines averaging around 75%. Models combining multiple data types consistently outperformed single-modality approaches. However, challenges include limited generalisability due to small datasets and the "black-box" nature of advanced models. Efforts to enhance explainability, such as SHapley Additive ExPlanations (SHAP), show promise but require refinement for clinical use. Conclusion: This review illuminates the nuances, complexities and contexts that influence the real-world advancement and adoption of these AI-driven techniques in precision oncology. It equips researchers with a deeper understanding of the intricacies of the ML algorithms employed. Actionable insights are provided for refining algorithms, optimising multimodal data utilisation, and bridging the gap between predictive accuracy and clinical utility. This rigorous analysis serves as a roadmap to advance real-world AI applications in oncological care, highlighting the collaborative efforts and robust datasets necessary to translate these advancements into tangible benefits for patient management.
引用
收藏
页数:18
相关论文
共 93 条
[41]   Body composition as a predictor of oncological outcome in patients with non-muscle-invasive bladder cancer receiving intravesical instillation after transurethral resection of bladder tumor [J].
Huang, Liang-Kang ;
Lin, Yu-Ching ;
Chuang, Hai-Hua ;
Chuang, Cheng-Keng ;
Pang, See-Tong ;
Wu, Chun-Te ;
Chang, Ying-Hsu ;
Yu, Kai-Jie ;
Lin, Po-Hung ;
Kan, Hung-Cheng ;
Chu, Yuan-Cheng ;
Hung, Wei-Kang ;
Hsieh, Ming-Li ;
Shao, I-Hung .
FRONTIERS IN ONCOLOGY, 2023, 13
[42]   Automated Detection and Grading of Non-Muscle-Invasive Urothelial Cell Carcinoma of the Bladder [J].
Jansen, Ilaria ;
Lucas, Marit ;
Bosschieter, Judith ;
de Boer, Onno J. ;
Meijer, Sybren L. ;
van Leeuwen, Ton G. ;
Marquering, Henk A. ;
Nieuwenhuijzen, Jakko A. ;
de Bruin, Daniel M. ;
Savci-Heijink, C. Dilara .
AMERICAN JOURNAL OF PATHOLOGY, 2020, 190 (07) :1483-1490
[43]   Deep Learning-based Recalibration of the CUETO and EORTC Prediction Tools for Recurrence and Progression of Non-muscle-invasive Bladder Cancer [J].
Jobczyk, Mateusz ;
Stawiski, Konrad ;
Kaszkowiak, Marcin ;
Rajwa, Pawel ;
Rozanski, Waldemar ;
Soria, Francesco ;
Shariat, Shahrokh F. ;
Fendler, Wojciech .
EUROPEAN UROLOGY ONCOLOGY, 2022, 5 (01) :109-112
[44]   Bladder cancer [J].
Kamat, Ashish M. ;
Hahn, Noah M. ;
Efstathiou, Jason A. ;
Lerner, Seth P. ;
Malmstrom, Per-Uno ;
Choi, Woonyoung ;
Guo, Charles C. ;
Lotan, Yair ;
Kassouf, Wassim .
LANCET, 2016, 388 (10061) :2796-2810
[45]   The updated points of TNM classification of urological cancers in the 8th edition of AJCC and UICC [J].
Kandori, Shuya ;
Kojima, Takahiro ;
Nishiyama, Hiroyuki .
JAPANESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 49 (05) :421-425
[46]   Transurethral resection of bladder tumour (TURBT) [J].
Kim, Lawrence H. C. ;
Patel, Manish I. .
TRANSLATIONAL ANDROLOGY AND UROLOGY, 2020, 9 (06) :3056-3072
[47]   Accuracy of the CUETO, EORTC 2016 and EAU 2021 scoring models and risk stratification tables to predict outcomes in high-grade non-muscle-invasive urothelial bladder cancer [J].
Krajewski, Wojciech ;
Aumatell, Julia ;
Daniel Subiela, Jose ;
Nowak, Lukasz ;
Tukiendorf, Andrzej ;
Moschini, Marco ;
Basile, Giuseppe ;
Poletajew, Slawomir ;
Malkiewicz, Bartosz ;
Del Giudice, Francesco ;
Maggi, Martina ;
Chung, Benjamin I. ;
Cimadamore, Alessia ;
Galosi, Andrea Benedetto ;
Delle Fave, Rocco Francesco ;
D'Andrea, David ;
Shariat, Shahrokh F. ;
Hornak, Jakub ;
Babjuk, Marko ;
Chorbinska, Joanna ;
Teoh, Jeremy Yuen-Chun ;
Muilwijk, Tim ;
Joniau, Steven ;
Tafuri, Alessandro ;
Antonelli, Alessandro ;
Panunzio, Andrea ;
Alvarez-Maestro, Mario ;
Simone, Giuseppe ;
Mastroianni, Riccardo ;
Laszkiewicz, Jan ;
Lonati, Chiara ;
Zamboni, Stefania ;
Simeone, Claudio ;
Niedziela, Lukasz ;
Candela, Luigi ;
Macek, Petr ;
Contieri, Roberto ;
Gutierrez Hidalgo, Beatriz ;
Gomez Rivas, Juan ;
Sosnowski, Roman ;
Mori, Keiichiro ;
Mir, Carmen ;
Soria, Francesco ;
Gonzalez-Padilla, Daniel A. ;
Rodriguez Faba, Oscar ;
Palou, Juan ;
Ploussard, Guillaume ;
Rajwa, Pawel ;
Halon, Agnieszka ;
Laukhtina, Ekaterina .
UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2022, 40 (11) :491.e11-491.e19
[48]   Urinary peptide panel for prognostic assessment of bladder cancer relapse [J].
Krochmal, Magdalena ;
van Kessel, Kim E. M. ;
Zwarthoff, Ellen C. ;
Belczacka, Iwona ;
Pejchinovski, Martin ;
Vlahou, Antonia ;
Mischak, Harald ;
Frantzi, Maria .
SCIENTIFIC REPORTS, 2019, 9 (1)
[49]   Radiomics: the bridge between medical imaging and personalized medicine [J].
Lambin, Philippe ;
Leijenaar, Ralph T. H. ;
Deist, Timo M. ;
Peerlings, Jurgen ;
de Jong, Evelyn E. C. ;
van Timmeren, Janita ;
Sanduleanu, Sebastian ;
Larue, Ruben T. H. M. ;
Even, Aniek J. G. ;
Jochems, Arthur ;
van Wijk, Yvonka ;
Woodruff, Henry ;
van Soest, Johan ;
Lustberg, Tim ;
Roelofs, Erik ;
van Elmpt, Wouter ;
Dekker, Andre ;
Mottaghy, Felix M. ;
Wildberger, Joachim E. ;
Walsh, Sean .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) :749-762
[50]   Economic Burden of Bladder Cancer Across the European Union [J].
Leal, Jose ;
Luengo-Fernandez, Ramon ;
Sullivan, Richard ;
Witjes, J. Alfred .
EUROPEAN UROLOGY, 2016, 69 (03) :438-447