Pediatric brain tumor classification using deep learning on MR images with age fusion

被引:0
|
作者
Tampu, Iulian Emil [1 ,2 ]
Bianchessi, Tamara [1 ,2 ,3 ]
Blystad, Ida [2 ,4 ,5 ]
Lundberg, Peter [2 ,6 ,7 ]
Nyman, Per [2 ,8 ,9 ]
Eklund, Anders [1 ,2 ,10 ]
Haj-Hosseini, Neda [1 ,2 ]
机构
[1] Linkoping Univ, Dept Biomed Engn, Campus US, S-58185 Linkoping, Sweden
[2] Linkoping Univ, Ctr Med Image Sci & Visualizat, Linkoping, Sweden
[3] Linkoping Univ, Dept Hlth Med & Caring Sci, Linkoping, Sweden
[4] Linkoping Univ, Dept Radiol, Linkoping, Sweden
[5] Linkoping Univ, Dept Hlth Med & Caring Sci, Linkoping, Sweden
[6] Linkoping Univ, Dept Radiat Phys, Linkoping, Sweden
[7] Linkoping Univ, Dept Med & Hlth Sci, Linkoping, Sweden
[8] Linkoping Univ, Crown Princess Victor Childrens Hosp, Linkoping, Sweden
[9] Linkoping Univ, Dept Hlth Med & Caring Sci, Linkoping, Sweden
[10] Linkoping Univ, Dept Comp & Informat Sci, Div Stat & Machine Learning, Linkoping, Sweden
关键词
age; data fusion; deep learning; MRI; pediatric brain tumor; CHILDREN;
D O I
10.1093/noajnl/vdae205
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose To implement and evaluate deep learning-based methods for the classification of pediatric brain tumors (PBT) in magnetic resonance (MR) data.Methods A subset of the "Children's Brain Tumor Network" dataset was retrospectively used (n = 178 subjects, female = 72, male = 102, NA = 4, age range [0.01, 36.49] years) with tumor types being low-grade astrocytoma (n = 84), ependymoma (n = 32), and medulloblastoma (n = 62). T1w post-contrast (n = 94 subjects), T2w (n = 160 subjects), and apparent diffusion coefficient (ADC: n = 66 subjects) MR sequences were used separately. Two deep learning models were trained on transversal slices showing tumor. Joint fusion was implemented to combine image and age data, and 2 pre-training paradigms were utilized. Model explainability was investigated using gradient-weighted class-activation mapping (Grad-CAM), and the learned feature space was visualized using principal component analysis (PCA).Results The highest tumor-type classification performance was achieved when using a vision transformer model pre-trained on ImageNet and fine-tuned on ADC images with age fusion (Matthews correlation coefficient [MCC]: 0.77 +/- 0.14, Accuracy: 0.87 +/- 0.08), followed by models trained on T2w (MCC: 0.58 +/- 0.11, Accuracy: 0.73 +/- 0.08) and T1w post-contrast (MCC: 0.41 +/- 0.11, Accuracy: 0.62 +/- 0.08) data. Age fusion marginally improved the model's performance. Both model architectures performed similarly across the experiments, with no differences between the pre-training strategies. Grad-CAMs showed that the models' attention focused on the brain region. PCA of the feature space showed greater separation of the tumor-type clusters when using contrastive pre-training.Conclusion Classification of PBT on MR images could be accomplished using deep learning, with the top-performing model being trained on ADC data, which radiologists use for the clinical classification of these tumors.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Classification of Muscular Dystrophies from MR Images Improves Using the Swin Transformer Deep Learning Model
    Mastropietro, Alfonso
    Casali, Nicola
    Taccogna, Maria Giovanna
    D'Angelo, Maria Grazia
    Rizzo, Giovanna
    Peruzzo, Denis
    BIOENGINEERING-BASEL, 2024, 11 (06):
  • [42] CSMEC-based deep learning model for detection and classification of brain tumours in MR images
    Beaulah Princiba, D.
    Ezhilarasi, P.
    Rajeshkannan, S.
    Neural Computing and Applications, 2024, 36 (29) : 18479 - 18498
  • [43] Classifying tumor brain images using parallel deep learning algorithms
    Kazemi, Ahmad
    Shiri, Mohammad Ebrahim
    Sheikhahmadi, Amir
    Khodamoradi, Mohamad
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 148
  • [44] Analysis of MRI brain tumor images using deep learning techniques
    Kalyani, B. J. D.
    Meena, K.
    Murali, E.
    Jayakumar, L.
    Saravanan, D.
    SOFT COMPUTING, 2023, 27 (11) : 7535 - 7542
  • [45] An automated brain tumor classification in MR images using an enhanced convolutional neural network
    Singh R.
    Agarwal B.B.
    International Journal of Information Technology, 2023, 15 (2) : 665 - 674
  • [46] Deep semi-supervised learning for brain tumor classification
    Ge, Chenjie
    Gu, Irene Yu-Hua
    Jakola, Asgeir Store
    Yang, Jie
    BMC MEDICAL IMAGING, 2020, 20 (01)
  • [47] Deep Learning Techniques for the Classification of Brain Tumor: A Comprehensive Survey
    Younis, Ayesha
    Li, Qiang
    Khalid, Mudassar
    Clemence, Beatrice
    Adamu, Mohammed Jajere
    IEEE ACCESS, 2023, 11 : 113050 - 113063
  • [48] Classification of brain tumours from MR images with an enhanced deep learning approach using densely connected convolutional network
    Prakash, R. Meena
    Kumari, R. Shantha Selva
    Valarmathi, K.
    Ramalakshmi, K.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (02) : 266 - 277
  • [49] Deep semi-supervised learning for brain tumor classification
    Chenjie Ge
    Irene Yu-Hua Gu
    Asgeir Store Jakola
    Jie Yang
    BMC Medical Imaging, 20
  • [50] Detection and Classification of Brain Tumor in MRI Images using Deep Convolutional Network
    Bhanothu, Yakub
    Kamalakannan, Anandhanarayanan
    Rajamanickam, Govindaraj
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 248 - 252