Development of LaCoO3 Nanoparticles Wrapped with rGO Sheets for Supercapacitor Devices

被引:0
作者
El-Bahy, Zeinhom M. [1 ]
Almasoud, Najla [2 ]
Alomar, Taghrid S. [2 ]
Al-wallan, Amal A. [2 ]
Ali, Mahmood [3 ]
Farid, Hafiz Muhammad Tahir [4 ]
机构
[1] Al Azhar Univ, Fac Sci, Dept Chem, Cairo 11884, Egypt
[2] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Chem, POB 84428, Riyadh 11671, Saudi Arabia
[3] Univ Punjab, Ctr Excellence Solid State Phys, Lahore 54000, Pakistan
[4] Adv Mat & Electrochem Res Lab, Taunsa 32100, Pakistan
来源
关键词
HIGH-PERFORMANCE; ELECTRODE MATERIAL; HYDROTHERMAL SYNTHESIS; COMPOSITE ELECTRODE; OXIDE NANOSHEETS; ENERGY-STORAGE; METAL-OXIDE; ARRAYS; NANOSTRUCTURES; NANOCOMPOSITES;
D O I
10.1007/s11837-025-07222-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The extensive use of metal oxide decorated with carbon-based materials for electrochemical energy storing devices has recently attracted considerable attention. The LaCoO3/rGO composite was fabricated for energy storage applications following different various analytical tools. The specific surface area of the LaCoO3@rGO composite 88 m2/g which was greater than the individual counterparts. The nanocomposite exhibited outstanding electrochemical behavior with a specific capacitance of 1530 F/g at 1 A/g, found from galvanostatic charge-discharge plots, which showed stability after 5000 cycles with a low charge transfer resistance of 0.19 Omega cm2 found from Nyquist plot. The addition of rGO into perovskites improved their electrochemical efficiency by providing a larger surface area and active sites and improved the conductivity. Moreover, the excellent stability of the composite shows it has potential to be used for next generation supercapacitor devices.
引用
收藏
页数:10
相关论文
共 76 条
  • [1] Gan M., Lu T., Yu W., Feng J., Chong X., J. Adv. Ceram, 13, (2024)
  • [2] Vinnik D.A., Zhivulin V.E., Sherstyuk D.P., Starikov A.Y., Zezyulina P.A., Gudkova S.A., Zherebtsov D.A., Rozanov K.N., Trukhanov S.V., Astapovich K.A., Sombra A.S.B., Zhou D., Jotania R.B., Singh C., Trukhanov A.V., J. Mater. Chem. C, 9, (2021)
  • [3] Owidah Z.O., Aman S., Abdullah M., Manzoor S., Fallatah A.M., Ibrahim M.M., Seaf Elnasr T.A., Ansari M.Z., Ceram. Int, 49, (2023)
  • [4] Xu K., Ma S., Shen Y., Ren Q., Yang J., Chen X., Hu J., Chem. Eng. J, 369, (2019)
  • [5] Kr Singh B., Das D., Gonzalez C., Ramana C.V., Energy Technol, 11, (2023)
  • [6] Ren W., Zhang Y.C., Zhu N.N., Feng A.L., Shang S.G., Ceram. Int, 46, (2020)
  • [7] Wang M., Jiang C., Zhang S., Song X., Tang Y., Cheng H.M., Nat. Chem, 10, (2018)
  • [8] Mo X., Xu G., Kang X., Yin H., Cui X., Zhao Y., Zhang J., Tang J., Wang F., Nanomaterials, 13, (2023)
  • [9] Kumar Y.A., Roy N., Ramachandran T., Hussien M., Moniruzzaman M., Joo S.W., J. Energy Storage, 98, (2024)
  • [10] Muthuselvi M., Jeyasubramanian K., Hikku G.S., Muthuselvan M., Eswaran M., Senthil Kumar N., Ponnusamy V.K., Int. J. Energy Res, 45, (2021)