A brain-wide map of descending inputs onto spinal V1 interneurons

被引:1
作者
Chapman, Phillip D. [1 ]
Kulkarni, Anand S. [1 ]
Trevisan, Alexandra J. [1 ]
Han, Katie [1 ]
Hinton, Jennifer M. [1 ]
Deltuvaite, Paulina [1 ]
Fenno, Lief E. [2 ,3 ]
Ramakrishnan, Charu [4 ]
Patton, Mary H. [1 ]
Schwarz, Lindsay A. [1 ]
Zakharenko, Stanislav S. [1 ]
Deisseroth, Karl [4 ,5 ,6 ,7 ]
Bikoff, Jay B. [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Dev Neurobiol, Memphis, TN 38105 USA
[2] Univ Texas Austin, Dept Neurosci, Austin, TX 78712 USA
[3] Univ Texas Austin, Dell Med Sch, Dept Psychiat & Behav Sci, Austin, TX 78712 USA
[4] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
[6] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
[7] Stanford Univ, Wu Tsai Neurosci Inst, Stanford, CA 94305 USA
关键词
Highlights; cervical V1 interneurons; distinct V1 clades; RED NUCLEUS; CORTICOSPINAL CIRCUITS; LOCOMOTOR CIRCUITS; MOTOR CORTEX; CELL-TYPE; NEURONS; CORD; ORGANIZATION; PROJECTIONS; DIVERSITY;
D O I
10.1016/j.neuron.2024.11.019
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Motor output results from the coordinated activity of neural circuits distributed across multiple brain regions that convey information to the spinal cord via descending motor pathways. Yet the organizational logic through which supraspinal systems target discrete components of spinal motor circuits remains unclear. Here, using viral transsynaptic tracing along with serial two-photon tomography, we have generated a whole-brain map of monosynaptic inputs to spinal V1 interneurons, a major inhibitory population involved in motor control. We identified 26 distinct brain structures that directly innervate V1 interneurons, spanning medullary and pontine regions in the hindbrain as well as cortical, midbrain, cerebellar, and neuromodulatory systems. Moreover, we identified broad but biased input from supraspinal systems onto V1Foxp2 and V1Pou6f2 neuronal subsets. Collectively, these studies reveal elements of biased connectivity and convergence in descending inputs to molecularly distinct interneuron subsets and provide an anatomical foundation for understanding how supraspinal systems influence spinal motor circuits.
引用
收藏
页码:524 / 538.e6
页数:22
相关论文
共 116 条
  • [1] Apps R., Garwicz M., Anatomical and physiological foundations of cerebellar information processing, Nat. Rev. Neurosci., 6, pp. 297-311, (2005)
  • [2] Arber S., Costa R.M., Networking brainstem and basal ganglia circuits for movement, Nat. Rev. Neurosci., 23, pp. 342-360, (2022)
  • [3] Grillner S., The motor infrastructure: from ion channels to neuronal networks, Nat. Rev. Neurosci., 4, pp. 573-586, (2003)
  • [4] Grillner S., El Manira A., Current principles of motor control, with special reference to vertebrate locomotion, Physiol. Rev., 100, pp. 271-320, (2020)
  • [5] Kuypers H., Anatomy of the descending pathways, Handbook of Physiology-the Nervous System, (1981)
  • [6] Lemon R.N., Descending pathways in motor control, Annu. Rev. Neurosci., 31, pp. 195-218, (2008)
  • [7] Liang H., Paxinos G., Watson C., Projections from the brain to the spinal cord in the mouse, Brain Struct. Funct., 215, pp. 159-186, (2011)
  • [8] Nudo R.J., Masterton R.B., Descending pathways to the spinal cord: a comparative study of 22 mammals, J. Comp. Neurol., 277, pp. 53-79, (1988)
  • [9] Leiras R., Cregg J.M., Kiehn O., Brainstem circuits for locomotion, Annu. Rev. Neurosci., 45, pp. 63-85, (2022)
  • [10] Brownstone R.M., Chopek J.W., Reticulospinal systems for tuning motor commands, Front. Neural Circuits, 12, (2018)