Norm inequalities for Hilbert space operators with applications

被引:0
作者
Bhunia, Pintu [1 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
关键词
Unitarily invariant norm; Schatten p -norm; Operator norm; Numerical radius; GEOMETRIC-MEAN INEQUALITY; NUMERICAL RADIUS; SINGULAR-VALUES; BOUNDS; ENERGY;
D O I
10.1016/j.laa.2025.02.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Several unitarily invariant norm inequalities and numerical radius inequalities for Hilbert space operators are studied. We investigate some necessary and sufficient conditions for the parallelism of two bounded operators. For a finite rank operator A, it is shown that ||A||p <= (rank A)1/2p||A||2p <= (rank A)(2p-1)/2p2 ||A||2p2, for all p >= 1 where ||center dot||pis the Schatten p-norm. If {lambda n(A)} is a listing of all non-zero eigenvalues (with multiplicity) of a compact operator A, then we show that || n |lambda n(A)|p <= 1 ||A||p 1 p + ||A2||p/2 p/2, for all p >= 2 2 2 which improves the classical Weyl's inequality n |lambda n(A)|p <= ||A||pp [Proc. Nat. Acad. Sci. USA 1949]. For an n x n matrix A, we show that the function p -> n-1/p||A||pis monotone increasing on p >= 1, complementing the well known decreasing nature of p -> Ap. As an application of these inequalities, we provide an upper bound for the sum of the absolute values of the zeros of a complex polynomial. As another application we provide a refined upper bound for the energy of a graph G, namely, E(G) <= 2m (rank Adj(G)), where m is the number of edges, improving on a bound by McClelland in 1971. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:40 / 67
页数:28
相关论文
共 40 条
[11]   Anderson?s theorem and A-spectral radius bounds for semi-Hilbertian space operators [J].
Bhunia, Pintu ;
Kittaneh, Fuad ;
Paul, Kallol ;
Sen, Anirban .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 657 :147-162
[12]   REFINEMENTS OF NORM AND NUMERICAL RADIUS INEQUALITIES [J].
Bhunia, Pintu ;
Paul, Kallol .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) :1953-1965
[13]   Furtherance of numerical radius inequalities of Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
ARCHIV DER MATHEMATIK, 2021, 117 (05) :537-546
[14]  
Buzano ML., 1974, Rend. Semin. Mat. Univ. Politech. Torino, V31, P405
[15]   Some New Refinements of Generalized Numerical Radius Inequalities for Hilbert Space Operators [J].
Feki, Kais ;
Kittaneh, Fuad .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
[16]  
Gustafson K. E., 1997, NUMERICAL RANGE
[17]   Laplacian energy of a graph [J].
Gutman, I ;
Zhou, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (01) :29-37
[18]  
GUTMAN I, 1985, Z PHYS CHEM-LEIPZIG, V266, P59
[19]  
Gutman I., 1978, Ber. Math.- Stat. Sekt. Schungsz. Graz, V103, P1, DOI [DOI 10.1016/J.LAA.2004.02.038, DOI 10.1088/1742-5468/2008/10/P10008]
[20]  
Gutman I., 1986, Mathematical Concepts in Organic Chemistry, DOI 10.1007/978-3-642-70982-1