Facial Expression Parameters Extraction using Graph Convolution Networks

被引:0
作者
Lee, Hyeong-Geun [1 ]
Hur, Jee-Sic [1 ]
Kim, Jin-Woong [1 ]
Kim, Do-Hyeun [1 ]
Kim, Soo-Kyun [1 ]
机构
[1] Jeju Natl Univ, Dept Comp Engn, Jeju, South Korea
来源
2024 FIFTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, ICUFN 2024 | 2024年
基金
新加坡国家研究基金会;
关键词
Graph Convolution Network; Blendshapes; 3D Facial Animation; Facial Action Cooding System;
D O I
10.1109/ICUFN61752.2024.10624931
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses a deep learning framework for the extraction of Facial Action Coding System coefficients from 3D facial models. To optimize the labor-intensive process associated with facial animation using traditional Blendshapes, this framework employs a Graph Convolution Network to extract feature vectors from 3D facial models, and accurately infers expression coefficients based on the Facial Action Coding System.
引用
收藏
页码:88 / 90
页数:3
相关论文
共 49 条
  • [41] Fault Diagnostics in Shipboard Power Systems using Graph Neural Networks
    Jacob, Roshni Anna
    Senemmar, Soroush
    Zhang, Jie
    2021 IEEE 13TH INTERNATIONAL SYMPOSIUM ON DIAGNOSTICS FOR ELECTRICAL MACHINES, POWER ELECTRONICS AND DRIVES (SDEMPED), 2021, : 316 - 321
  • [42] Monitor water quality through retrieving water quality parameters from hyperspectral images using graph convolution network with superposition of multi-point effect: A case study in Maozhou River
    Zhang, Yishan
    Kong, Xin
    Deng, Licui
    Liu, Yawei
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 342
  • [43] Fake news or real? Detecting deepfake videos using geometric facial structure and graph neural network
    Saif, Shahela
    Tehseen, Samabia
    Ali, Syed Sohaib
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2024, 205
  • [44] Identification of autism spectrum disorder based on functional near-infrared spectroscopy using adaptive spatiotemporal graph convolution network
    Zhang, Haoran
    Xu, Lingyu
    Yu, Jie
    Li, Jun
    Wang, Jinhong
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [45] Temporal Temperature Profile Prediction Using Graph Convolutional Networks and Inverted Echosounder Measurements
    Zhang, Yu
    Cui, Xuerong
    Li, Juan
    Li, Lei
    Jiang, Bin
    Li, Shibao
    Liu, Jianhang
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2025, 50 (01) : 31 - 44
  • [46] Forecasting PM2.5 using hybrid graph convolution-based model considering dynamic wind-field to offer the benefit of spatial interpretability
    Zhou, Hongye
    Zhang, Feng
    Du, Zhenhong
    Liu, Renyi
    ENVIRONMENTAL POLLUTION, 2021, 273
  • [47] Multi-source information fusion for dynamic safety risk prediction of aerial building machine using spatial-temporal multi-graph convolution network
    Wang, Jiaqi
    Fan, Yuqing
    Pan, Xi
    Sun, Jun
    Zhang, Limao
    ADVANCED ENGINEERING INFORMATICS, 2025, 65
  • [48] An Adaptive Spatio-Temporal Traffic Flow Prediction Using Self-Attention and Multi-Graph Networks
    Alsehaimi, Basma
    Alzamzami, Ohoud
    Alowidi, Nahed
    Ali, Manar
    SENSORS, 2025, 25 (01)
  • [49] HLGST: Hybrid local-global spatio-temporal model for travel time estimation using Siamese graph convolutional with triplet networks
    Elsir, Alfateh M. Tag
    Khaled, Alkilane
    Shen, Yanming
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 229