Facial Expression Parameters Extraction using Graph Convolution Networks

被引:0
作者
Lee, Hyeong-Geun [1 ]
Hur, Jee-Sic [1 ]
Kim, Jin-Woong [1 ]
Kim, Do-Hyeun [1 ]
Kim, Soo-Kyun [1 ]
机构
[1] Jeju Natl Univ, Dept Comp Engn, Jeju, South Korea
来源
2024 FIFTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, ICUFN 2024 | 2024年
基金
新加坡国家研究基金会;
关键词
Graph Convolution Network; Blendshapes; 3D Facial Animation; Facial Action Cooding System;
D O I
10.1109/ICUFN61752.2024.10624931
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses a deep learning framework for the extraction of Facial Action Coding System coefficients from 3D facial models. To optimize the labor-intensive process associated with facial animation using traditional Blendshapes, this framework employs a Graph Convolution Network to extract feature vectors from 3D facial models, and accurately infers expression coefficients based on the Facial Action Coding System.
引用
收藏
页码:88 / 90
页数:3
相关论文
共 49 条
  • [31] Using pre-trained models and graph convolution networks to find the causal relations among events in the Chinese financial text data
    Kai Hu
    Qing Li
    Jie Xie
    Yingyan Pu
    Ya Guo
    Multimedia Tools and Applications, 2024, 83 : 18699 - 18720
  • [32] Event Detection Using a Self-Constructed Dependency and Graph Convolution Network
    He, Li
    Meng, Qingxin
    Zhang, Qing
    Duan, Jianyong
    Wang, Hao
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [33] Multiphase Flow Modeling Using Process Knowledge Integrating Temporal Graph Convolution Network
    Deng, Hongying
    Zhu, Jialiang
    Yang, Qinmin
    Liu, Yi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [34] A Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network
    Lee, Hyunsung
    Cho, Sangwoo
    Jang, Yeongjae
    Lee, Jinkyu
    Woo, Honguk
    IEEE ACCESS, 2021, 9 : 158548 - 158561
  • [35] Skeleton-Based Human Action Recognition with Spatial and Temporal Attention-Enhanced Graph Convolution Networks
    Xu, Fen
    Shi, Pengfei
    Zhang, Xiaoping
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2024, 28 (06) : 1367 - 1379
  • [36] EEG-fNIRS-Based Emotion Recognition Using Graph Convolution and Capsule Attention Network
    Chen, Guijun
    Liu, Yue
    Zhang, Xueying
    BRAIN SCIENCES, 2024, 14 (08)
  • [37] Traffic flow prediction using multi-view graph convolution and masked attention mechanism
    Chen, Lingqiang
    Shi, Pei
    Li, Guanghui
    Qi, Tao
    COMPUTER COMMUNICATIONS, 2022, 194 : 446 - 457
  • [38] Advancing Cascading Residual Graph Convolution Networks for Multi-behavior Recommendation: An Innovative Approach Within Representation Learning
    Liu, Hu
    Lu, Xuanyu
    Zhou, Wei
    Wen, Junhao
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 287 - 299
  • [39] Body RFID Skeleton-Based Human Activity Recognition Using Graph Convolution Neural Network
    Wang, Ziyi
    Chen, Yihong
    Zheng, Hao
    Liu, Meng
    Huang, Ping
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 7301 - 7317
  • [40] A joint hierarchical cross-attention graph convolutional network for multi-modal facial expression recognition
    Xu, Chujie
    Du, Yong
    Wang, Jingzi
    Zheng, Wenjie
    Li, Tiejun
    Yuan, Zhansheng
    COMPUTATIONAL INTELLIGENCE, 2024, 40 (01)