Facial Expression Parameters Extraction using Graph Convolution Networks

被引:0
作者
Lee, Hyeong-Geun [1 ]
Hur, Jee-Sic [1 ]
Kim, Jin-Woong [1 ]
Kim, Do-Hyeun [1 ]
Kim, Soo-Kyun [1 ]
机构
[1] Jeju Natl Univ, Dept Comp Engn, Jeju, South Korea
来源
2024 FIFTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, ICUFN 2024 | 2024年
基金
新加坡国家研究基金会;
关键词
Graph Convolution Network; Blendshapes; 3D Facial Animation; Facial Action Cooding System;
D O I
10.1109/ICUFN61752.2024.10624931
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses a deep learning framework for the extraction of Facial Action Coding System coefficients from 3D facial models. To optimize the labor-intensive process associated with facial animation using traditional Blendshapes, this framework employs a Graph Convolution Network to extract feature vectors from 3D facial models, and accurately infers expression coefficients based on the Facial Action Coding System.
引用
收藏
页码:88 / 90
页数:3
相关论文
共 49 条
  • [1] Clustering using graph convolution networks
    Al Jreidy, Maria
    Constantin, Joseph
    Dornaika, Fadi
    Hamad, Denis
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2024,
  • [2] Enhancing Facial Reconstruction Using Graph Attention Networks
    Lee, Hyeong Geun
    Hur, Jee Sic
    Yoon, Yeo Chan
    Kim, Soo Kyun
    IEEE ACCESS, 2023, 11 : 136680 - 136691
  • [3] Graph Convolution Networks for Cell Segmentation
    Bahade, Sachin
    Edwards, Michael
    Xie, Xianghua
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM), 2021, : 620 - 627
  • [4] Anomaly Detection in Spacecraft Telemetry Data using Graph Convolution Networks
    Song, Yue
    Yu, Jinsong
    Tang, Diyin
    Yang, Jie
    Kong, Lingkun
    Li, Xin
    2022 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2022), 2022,
  • [5] Balanced Team Formation Using Hybrid Graph Convolution Networks and MILP
    Sharaf, Mohamed A.
    Alghamdi, Turki G.
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [6] Improved fault detection and diagnosis using graph auto encoder and attention-based graph convolution networks
    Brahmbhatt, Parth
    Patel, Rahul
    Maheshwari, Abhilasha
    Gudi, Ravindra D.
    DIGITAL CHEMICAL ENGINEERING, 2024, 11
  • [7] A Novel Representation of Graphical Patterns for Graph Convolution Networks
    Benini, Marco
    Bongini, Pietro
    Trentin, Edmondo
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, ANNPR 2022, 2023, 13739 : 16 - 27
  • [8] ANOM-DGCN: Detection of Anomalies in Dynamic Networks using Deviated Graph Convolution Network
    Bhumika
    Das, Debasis
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 1273 - 1278
  • [9] A unified framework for convolution-based graph neural networks
    Pan, Xuran
    Han, Xiaoyan
    Wang, Chaofei
    Li, Zhuo
    Song, Shiji
    Huang, Gao
    Wu, Cheng
    PATTERN RECOGNITION, 2024, 155
  • [10] Multicommunity Graph Convolution Networks with Decision Fusion for Personalized Recommendation
    Liu, Shenghao
    Wang, Bang
    Liu, Bin
    Yang, Laurence T.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2022, PT III, 2022, 13282 : 16 - 28