Accuracy of Prospective Assessments of 4 Large Language ModelChatbot Responses to Patient Questions About Emergency Care:Experimental Comparative Study

被引:9
作者
Yau, Jonathan Yi-Shin [1 ]
Saadat, Soheil [2 ]
Hsu, Edmund [2 ]
Murphy, Linda Suk-Ling [3 ]
Roh, Jennifer S. [4 ]
Suchard, Jeffrey [2 ]
Tapia, Antonio [2 ]
Wiechman, Warren [2 ]
Langdorf, Mark, I [2 ]
机构
[1] Univ Calif Riverside, Coll Nat & Agr Sci, Riverside, CA USA
[2] Univ Calif Irvine, Dept Emergency Med, 101 City Dr,Route 128-01, Orange, CA 92868 USA
[3] Univ Calif Irvine Lib, Reference Dept, Irvine, CA USA
[4] Univ Calif Los Angeles, Harbor UCLA Med Ctr, Dept Emergency Med, Torrance, CA USA
关键词
artificial intelligence; AI; chatbots; generative AI; natural language processing; consumer health information; patient education; literacy; emergency care information; chatbot; misinformation; health care; medical consultation; HEALTH INFORMATION; QUALITY;
D O I
10.2196/60291
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Recent surveys indicate that 48% of consumers actively use generative artificial intelligence (AI) for health-related inquiries. Despite widespread adoption and the potential to improve health care access, scant research examines the performance of AI chatbot responses regarding emergency care advice. Objective: We assessed the quality of AI chatbot responses to common emergency care questions. We sought to determine qualitative differences in responses from 4 free-access AI chatbots, for 10 different serious and benign emergency conditions. Methods: We created 10 emergency care questions that we fed into the free-access versions of ChatGPT 3.5 (OpenAI), Google Bard, Bing AI Chat (Microsoft), and Claude AI (Anthropic) on November 26, 2023. Each response was graded by 5 board-certified emergency medicine (EM) faculty for 8 domains of percentage accuracy, presence of dangerous information, factual accuracy, clarity, completeness, understandability, source reliability, and source relevancy. We determined the correct, complete response to the 10 questions from reputable and scholarly emergency medical references. These were compiled by an EM resident physician. For the readability of the chatbot responses, we used the Flesch-Kincaid Grade Level of each response from readability statistics embedded in Microsoft Word. Differences between chatbots were determined by the chi-square test. Results: Each of the 4 chatbots' responses to the 10 clinical questions were scored across 8 domains by 5 EM faculty, for 400 assessments for each chatbot. Together, the 4 chatbots had the best performance in clarity and understandability (both 85%), intermediate performance in accuracy and completeness (both 50%), and poor performance (10%) for source relevance and reliability (mostly unreported). Chatbots contained dangerous information in 5% to 35% of responses, with no statistical difference between chatbots on this metric (P=.24). ChatGPT, Google Bard, and Claud AI had similar performances across 6 out of 8 domains. Only Bing AI performed better with more identified or relevant sources (40%; the others had 0%-10%). Flesch-Kincaid Reading level was 7.7-8.9 grade for all chatbots, except ChatGPT at 10.8, which were all too advanced for average emergency patients. Responses included both dangerous (eg, starting cardiopulmonary resuscitation with no pulse check) and generally inappropriate advice (eg, loosening the collar to improve breathing without evidence of airway compromise). Conclusions: AI chatbots, though ubiquitous, have significant deficiencies in EM patient advice, despite relatively consistent performance. Information for when to seek urgent or emergent care is frequently incomplete and inaccurate, and patients may be unaware of misinformation. Sources are not generally provided. Patients who use AI to guide health care decisions assume potential risks. AI chatbots for health should be subject to further research, refinement, and regulation. We strongly recommend proper medical consultation to prevent potential adverse outcomes.
引用
收藏
页数:15
相关论文
共 46 条
[1]   Snakebite Advice and Counseling From Artificial Intelligence: An Acute Venomous Snakebite Consultation With ChatGPT [J].
Altamimi, Ibraheem ;
Altamimi, Abdullah ;
Alhumimidi, Abdullah S. ;
Altamimi, Abdulaziz ;
Temsah, Mohamad Hani .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (06)
[2]  
[Anonymous], 2023, EU AI act: first regulation on artificial intelligence
[3]  
[Anonymous], 2023, Digital access: a super determinant of health
[4]  
[Anonymous], 2023, Estimates of emergency department visits in the United States, 2016-2021
[5]  
[Anonymous], Can GenAI help make health care affordable? Consumers think so
[6]  
[Anonymous], 2023, Executive order on the safe, secure, and trustworthy development and use of artificial intelligence
[7]  
[Anonymous], 2024, Health misinformation
[8]  
[Anonymous], 2020, What is a chatbot?
[9]   Chief Complaints, Underlying Diagnoses, and Mortality in Adult, Non-trauma Emergency Department Visits: A Population-based, Multicenter Cohort Study [J].
Arvig, Michael Dan ;
Mogensen, Christian Backer ;
Skjrt-Arkil, Helene ;
Johansen, Isik Somuncu ;
Rosenvinge, Flemming Schrnning ;
Lassen, Annmarie Touborg .
WESTERN JOURNAL OF EMERGENCY MEDICINE, 2022, 23 (06) :855-863
[10]   What do evaluation instruments tell us about the quality of complementary medicine information on the internet? [J].
Breckons, Matthew ;
Jones, Ray ;
Morris, Jenny ;
Richardson, Janet .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2008, 10 (01)