Influence of interlayer dwell time on microstructure and mechanical properties additively manufactured 316L stainless steel by laser directed energy deposition

被引:1
|
作者
Chen, Zhaoqiang [1 ,2 ,3 ]
Zhang, Ziyu [1 ]
Yang, Yuying [1 ,2 ,3 ]
Xiao, Guangchun [1 ,2 ,3 ]
Yi, Mingdong [1 ,2 ,3 ]
Zhou, Tingting [1 ,2 ,3 ]
Xu, Chonghai [1 ,2 ,3 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Mech Engn, Jinan 250353, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Shandong Machinery Design & Res Inst, Jinan 250031, Peoples R China
[3] Qilu Univ Technol, Shandong Acad Sci, Key Lab Adv Mfg & Measurement & Control Technol Li, Jinan 250353, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2025年 / 34卷
基金
中国国家自然科学基金;
关键词
Laser directed energy deposition; Interlayer dwell time; Mechanical properties; 316L stainless steel; POROSITY;
D O I
10.1016/j.jmrt.2024.12.120
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser directed energy deposition (LDED) is widely utilized due to its high precision, fast processing speed, small heat affected zone, strong machinability, environmental protection, energy saving, and high reliability. 316L stainless steel is one of the most extensively studied materials employed in the LDED process. The process parameters of LDED are known to affect the thermal history process, which subsequently influences the microstructure and mechanical properties of the final product. Therefore, the effects of different interlayer residence times (interlayer cooling after each deposition of four layers to enhance production efficiency) on the microstructure and mechanical properties of LDED 316L stainless steel are discussed in this paper. The experimental results indicate that with the extension of the interlayer residence time (IDT), the morphology of the molten pool becomes increasingly stable, the surface quality of the component improves, and the grains are refined. When the IDT is set to 360 s, it is observed that the ultimate tensile strength of the sample is 34% higher compared to when the IDT is 0 s, the elongation is increased by 47%, and the hardness is enhanced by 13%. These findings underscore the importance of optimizing the laser interlayer residence time to improve the overall performance of 316L stainless steel parts.
引用
收藏
页码:1304 / 1312
页数:9
相关论文
共 50 条
  • [41] EFFECT OF EXTERNAL MAGNETIC FIELD ON THE MICROSTRUCTURE OF 316L STAINLESS STEEL FABRICATED BY DIRECTED ENERGY DEPOSITION
    Wang, Jin
    Wang, Yachao
    Shi, Jing
    Su, Yutai
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 2B, 2019,
  • [42] Mechanical properties and microstructure of additively manufactured stainless steel with laser welded joints
    Zhang, Ruizhi
    Buchanan, Craig
    Matilainen, Ville-Pekka
    Daskalaki-Mountanou, Dafni
    Ben Britton, T.
    Piili, Heidi
    Salminen, Antti
    Gardner, Leroy
    MATERIALS & DESIGN, 2021, 208
  • [43] State of the Art of Selective Laser Melted 316L Stainless Steel: Process, Microstructure, and Mechanical Properties
    Jiang Huazhen
    Fang Jiahuiyu
    Chen Qisheng
    Yao Shaoke
    Sun Huilei
    Hou Jingyu
    Hu Qiyun
    Li Zhengyang
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2022, 49 (14):
  • [44] Mechanical properties and microstructure evolution of additive manufactured 316L stainless steel under dynamic loading
    Li, Ji Ning
    Gao, Dong
    Lu, Yong
    Hao, Zhao Peng
    Wang, Zhi Qi
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 855
  • [45] Influence of internal and surface defects on the fatigue performance of additively manufactured stainless steel 316L
    Dastgerdi, Jairan Nafar
    Jaberi, Omid
    Remes, Heikki
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 163
  • [46] Influence of native oxide film on corrosion behavior of additively manufactured stainless steel 316L
    Choundraj, Jahnavi Desai
    Kelly, Robert G.
    Monikandan, Rebhadevi
    Singh, Preet M.
    Kacher, Josh
    CORROSION SCIENCE, 2023, 217
  • [47] Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition
    Guo, Peng
    Zou, Bin
    Huang, Chuanzhen
    Gao, Huabing
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2017, 240 : 12 - 22
  • [48] Microstructure of 316L stainless steel components produced by direct laser deposition
    Sklyar M.O.
    Turichin G.A.
    Klimova O.G.
    Zotov O.G.
    Topalov I.K.
    Steel in Translation, 2016, 46 (12) : 883 - 887
  • [49] Defect-associated microstructure evolution and deformation heterogeneities in additively manufactured 316L stainless steel
    Fan, Feifan
    Jiang, Mingguang
    Wang, Pei
    Liu, Changyong
    Liu, Zhiyuan
    Chen, Zhangwei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 861
  • [50] Effect of nitrogen atmosphere on the mechanical properties and microstructure of sus316l stainless steel additively manufactured by selective laser melting
    Miyauchi H.
    Yokota K.
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67 (08): : 441 - 446