Targeting KAT7 inhibits the progression of colorectal cancer

被引:0
作者
Wang, Hao [1 ,2 ]
Guan, Tianwang [3 ,4 ,5 ]
Hu, Rong [1 ,2 ]
Huang, Zhongjie [1 ,2 ]
Liang, Zhao [1 ,2 ]
Lin, Xiaonan [1 ,2 ]
Qiu, Yingqi [1 ,2 ]
Liao, Peiyun [1 ,2 ]
Guo, Xiongbo [7 ]
Ke, Yushen [6 ]
Zhang, Honghao [1 ,2 ]
Ou, Caiwen [4 ,6 ]
Li, Yuhua [1 ,2 ]
机构
[1] Southern Med Univ, Zhujiang Hosp, Dept Hematol, Guangzhou 510280, Peoples R China
[2] Guangdong Engn Res Ctr Precis Immune Cell Therapy, Guangzhou 510280, Peoples R China
[3] Southern Med Univ, 10th Affiliated Hosp, Dongguan Peoples Hosp, Canc Ctr, Guangzhou 510280, Guangdong, Peoples R China
[4] Guangdong Prov Key Lab Cardiac Funct & Microcircul, Guangzhou 510280, Peoples R China
[5] Southern Med Univ, Affiliated Hosp 10, Dongguan Peoples Hosp, Dongguan Inst Clin Canc Res,Dongguan Engn Res Ctr, Dongguan 523059, Peoples R China
[6] Southern Med Univ, Affiliated Hosp 10, Dongguan Peoples Hosp, Guangzhou 523059, Guangdong, Peoples R China
[7] Guangzhou Med Univ, Affiliated Hosp 2, Dept Gastrointestinal Surg, Guangzhou 510280, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
colorectal cancer; target therapy; MAPK; epigenetics; KAT7; HBO1; GENE;
D O I
10.7150/thno.106085
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Rationale: Colorectal cancer (CRC) is a leading cause of cancer-related mortality. Epigenetic modifications play a significant role in the progression of CRC. KAT7, a histone acetyltransferase, has an unclear role in CRC. Methods: In this research, we analyzed the expression of KAT7 in CRC patients and its correlation with prognosis using the GEO database, western blot, and immunohistochemistry. We assessed the impact of KAT7 on CRC cell functions through cell viability, colony formation, flow cytometry, scratch, and transwell assays. Mechanistic insights were obtained via RNA sequencing and ChIP-qPCR. Additionally, we evaluated the effects of KAT7 on CRC growth and metastasis in vivo using mouse subcutaneous tumor and lung metastasis models. Results: In this study, we discovered an upregulated KAT7 signaling pathway in CRC and its association with poor patient survival. Knockdown of KAT7 promotes apoptosis and inhibits proliferation, migration, and invasion of CRC cells. Conversely, KAT7 overexpression enhanced these cellular processes. In vivo assays confirmed that knockdown of KAT7 can inhibit CRC proliferation and lung metastasis. Mechanistically, KAT7 acetylated histone H3 at lysine 14 (H3K14) to enhance MRAS transcription, which activated the MAPK/ERK pathway and promoted tumorigenesis. The enzymatic function of KAT7 as an acetyltransferase is crucial for the advancement of colorectal cancer. In KAT7 knockdown CRC cells, re-expression of KAT7, but not an acetyltransferase-deficient mutant, rescued MRAS expression, ERK phosphorylation, and CRC tumorigenesis. Conclusion: We found that KAT7 is highly expressed in CRC patients, and those with high KAT7 expression have a worse prognosis. KAT7 enhances MRAS gene transcription by promoting H3K14 acetylation, thereby activating the MAPK/ERK pathway and promoting malignant phenotypes of CRC. In summary, KAT7 represents a promising target for CRC therapy.
引用
收藏
页码:1478 / 1495
页数:18
相关论文
共 49 条
[1]   KAT7 is a genetic vulnerability of acute myeloid leukemias driven byMLLrearrangements [J].
Au, Yan Zi ;
Gu, Muxin ;
De Braekeleer, Etienne ;
Gozdecka, Malgorzata ;
Aspris, Demetrios ;
Tarumoto, Yusuke ;
Cooper, Jonathan ;
Yu, Jason ;
Ong, Swee Hoe ;
Chen, Xi ;
Tzelepis, Konstantinos ;
Huntly, Brian J. P. ;
Vassiliou, George ;
Yusa, Kosuke .
LEUKEMIA, 2021, 35 (04) :1012-1022
[2]   Conserved Molecular Interactions within the HBO1 Acetyltransferase Complexes Regulate Cell Proliferation [J].
Avvakumov, Nikita ;
Lalonde, Marie-Eve ;
Saksouk, Nehme ;
Paquet, Eric ;
Glass, Karen C. ;
Landry, Anne-Julie ;
Doyon, Yannick ;
Cayrou, Christelle ;
Robitaille, Genevieve A. ;
Richard, Darren E. ;
Yang, Xiang-Jiao ;
Kutateladze, Tatiana G. ;
Cote, Jacques .
MOLECULAR AND CELLULAR BIOLOGY, 2012, 32 (03) :689-703
[3]   Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies [J].
Bahar, Md Entaz ;
Kim, Hyun Joon ;
Kim, Deok Ryong .
SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2023, 8 (01)
[4]   A multiomics analysis-assisted deep learning model identifies a macrophage-oriented module as a potential therapeutic target in colorectal cancer [J].
Bao, Xuanwen ;
Li, Qiong ;
Chen, Dong ;
Dai, Xiaomeng ;
Liu, Chuan ;
Tian, Weihong ;
Zhang, Hangyu ;
Jin, Yuzhi ;
Wang, Yin ;
Cheng, Jinlin ;
Lai, Chunyu ;
Ye, Chanqi ;
Xin, Shan ;
Li, Xin ;
Su, Ge ;
Ding, Yongfeng ;
Xiong, Yangyang ;
Xie, Jindong ;
Tano, Vincent ;
Wang, Yanfang ;
Fu, Wenguang ;
Deng, Shuiguang ;
Fang, Weijia ;
Heng, Jianpeng S. ;
Ruan, Jian ;
Zhao, Peng .
CELL REPORTS MEDICINE, 2024, 5 (02)
[5]   5-Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes [J].
Blondy, Sabrina ;
David, Valentin ;
Verdier, Mireille ;
Mathonnet, Muriel ;
Perraud, Aurelie ;
Christou, Niki .
CANCER SCIENCE, 2020, 111 (09) :3142-3154
[6]   Structure of the SHOC2-MRAS-PP1C complex provides insights into RAF activation and Noonan syndrome [J].
Bonsor, Daniel A. ;
Alexander, Patrick ;
Snead, Kelly ;
Hartig, Nicole ;
Drew, Matthew ;
Messing, Simon ;
Finci, Lorenzo, I ;
Nissley, Dwight, V ;
McCormick, Frank ;
Esposito, Dominic ;
Rodriguez-Viciana, Pablo ;
Stephen, Andrew G. ;
Simanshu, Dhirendra K. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2022, 29 (10) :966-+
[7]   Hepatic prohibitin 1 and methionine adenosyltransferase a1 defend against primary and secondary liver cancer metastasis [J].
Fan, Wei ;
Cao, DuoYao ;
Yang, Bing ;
Wang, Jiaohong ;
Li, Xiaomo ;
Kitka, Diana ;
Li, Tony W. H. ;
You, Sungyong ;
Shiao, Stephen ;
Gangi, Alexandra ;
Posadas, Edwin ;
Di Vizio, Dolores ;
Tomasi, Maria Lauda ;
Seki, Ekihiro ;
Mato, Jose M. ;
Yang, Heping ;
Lu, Shelly C. .
JOURNAL OF HEPATOLOGY, 2024, 80 (03) :443-453
[8]   The histone acetyltransferase HBO1 functions as a novel oncogenic gene in osteosarcoma [J].
Gao, Yan-yang ;
Ling, Zhuo-yan ;
Zhu, Yun-Rong ;
Shi, Ce ;
Wang, Yin ;
Zhang, Xiang-yang ;
Zhang, Zhi-qing ;
Jiang, Qin ;
Chen, Min-Bin ;
Yang, Shuofei ;
Cao, Cong .
THERANOSTICS, 2021, 11 (10) :4599-4615
[9]   Guiding the HBO1 complex function through the JADE subunit [J].
Gaurav, Nitika ;
Kanai, Akinori ;
Lachance, Catherine ;
Cox, Khan L. ;
Liu, Jiuyang ;
Grzybowski, Adrian T. ;
Saksouk, Nehme ;
Klein, Brianna J. ;
Komata, Yosuke ;
Asada, Shuhei ;
Ruthenburg, Alexander J. ;
Poirier, Michael G. ;
Cote, Jacques ;
Yokoyama, Akihiko ;
Kutateladze, Tatiana G. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2024, 31 (07) :1039-1049
[10]   Structure of the MRAS-SHOC2-PP1C phosphatase complex [J].
Hauseman, Zachary J. ;
Fodor, Michelle ;
Dhembi, Anxhela ;
Viscomi, Jessica ;
Egli, David ;
Bleu, Melusine ;
Katz, Stephanie ;
Park, Eunyoung ;
Jang, Dong Man ;
Porter, Kathryn A. ;
Meili, Fabian ;
Guo, Hongqiu ;
Kerr, Grainne ;
Molle, Sandra ;
Velez-Vega, Camilo ;
Beyer, Kim S. ;
Galli, Giorgio G. ;
Maira, Saveur-Michel ;
Stams, Travis ;
Clark, Kirk ;
Eck, Michael J. ;
Tordella, Luca ;
Thoma, Claudio R. ;
King, Daniel A. .
NATURE, 2022, 609 (7926) :416-+