The exploitation of eigenspectra in electrochemical impedance spectroscopy: Reconstruction of spectra from sparse measurements

被引:0
作者
Maenken, Christian [1 ,2 ]
Schaefer, Dominik [1 ]
Eichel, Ruediger-A. [1 ,2 ]
机构
[1] Forschungszentrum Julich GmbH, Inst Energy Technol Fundamental Electrochem IET 1, D-52428 Julich, Germany
[2] Rhein Westfal TH Aachen, Inst Phys Chem, D-52074 Aachen, Germany
关键词
Electrochemical impedance spectroscopy; Solid oxide cell stacks; Reconstruction from sparse measurements; Optimal sensor placement; On-board diagnostics; FUEL; EXCITATION;
D O I
10.1016/j.jpowsour.2024.235808
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical Impedance Spectroscopy (EIS) represents one of the most widely utilized techniques for the characterization of solid oxide cells (SOCs) and stacks in contemporary research. This work examines patterns in a set X of over 2,600 EIS measurements conducted on SOC stack level to identify a low- dimensional representation of the data. Besides the efficient training of data-driven models in such, this work primarily focuses on enabling the reconstruction of complete spectra from sampling the impedance at a limited number of relevant frequencies, thus significantly reducing the measurement time. By applying singular value decomposition, a reconstruction matrix can be developed containing a set of r patterns to sufficiently describe all the EIS in X . Based on these patterns, a set of r /2 tailored frequencies can be determined. For every permutation of measurement conditions in X and for r between four and twelve, the reconstruction results are comprehensively discussed utilizing EIS measurements conducted on a holdout SOC stack and thus not being part of the data set X. Furthermore, EIS containing varying faults and artificially distorted EIS are used to also capture unforeseen behavior. Depending on the measurement conditions accurate reconstructions can be reported for r = 6, i.e. three tailored frequencies.
引用
收藏
页数:12
相关论文
共 29 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   GEKKO Optimization Suite [J].
Beal, Logan D. R. ;
Hill, Daniel C. ;
Martin, R. Abraham ;
Hedengren, John D. .
PROCESSES, 2018, 6 (08)
[3]   Solid oxide fuel cell development at Forschungszentrum Juelich [J].
Blum, L. ;
Buchkremer, H.-P. ;
Gross, S. ;
Gubner, A. ;
de Haart, L. G. J. ;
Nabielek, H. ;
Quadakkers, W. J. ;
Reisgen, U. ;
Smith, M. J. ;
Steinberger-Wilckens, R. ;
Steinbrech, R. W. ;
Tietz, F. ;
Vinke, I. C. .
FUEL CELLS, 2007, 7 (03) :204-210
[4]  
Brunton SL, 2019, DATA-DRIVEN SCIENCE AND ENGINEERING: MACHINE LEARNING, DYNAMICAL SYSTEMS, AND CONTROL, pIX, DOI 10.1017/9781108380690
[5]   Model-assisted identification of solid oxide cell elementary processes by electrochemical impedance spectroscopy measurements [J].
Caliandro, P. ;
Nakajo, A. ;
Diethelm, S. ;
Van Herle, J. .
JOURNAL OF POWER SOURCES, 2019, 436
[6]   Robust flow reconstruction from limited measurements via sparse representation [J].
Callaham, Jared ;
Maeda, Kazuki ;
Brunton, Steven L. .
PHYSICAL REVIEW FLUIDS, 2019, 4 (10)
[7]   Reconstruction of full-field dynamic responses for large-scale structures using optimal sensor placement [J].
Cao, Jixing ;
Bu, Fanfu ;
Wang, Jianze ;
Bao, Chao ;
Chen, Weiwei ;
Dai, Kaoshan .
JOURNAL OF SOUND AND VIBRATION, 2023, 554
[8]  
Chatterjee A, 2000, CURR SCI INDIA, V78, P808
[9]   THE APPROXIMATION OF ONE MATRIX BY ANOTHER OF LOWER RANK [J].
Eckart, Carl ;
Young, Gale .
PSYCHOMETRIKA, 1936, 1 (03) :211-218
[10]   Battery parameter identification with Pseudo Random Binary Sequence excitation (PRBS) [J].
Fairweather, A. J. ;
Foster, M. P. ;
Stone, D. A. .
JOURNAL OF POWER SOURCES, 2011, 196 (22) :9398-9406