Non-Contact Blood Pressure Monitoring Using Radar Signals: A Dual-Stage Deep Learning Network

被引:0
作者
Wang, Pengfei [1 ,2 ]
Yang, Minghao [1 ]
Zhang, Xiaoxue [1 ]
Wang, Jianqi [3 ]
Wang, Cong [1 ]
Jia, Hongbo [1 ]
机构
[1] Air Force Med Univ, Air Force Med Ctr, Dept Nucl Med, Beijing 100036, Peoples R China
[2] Dujiangyan Special Serv Nursing Ctr Air Force, Chengdu 611800, Peoples R China
[3] Air Force Med Univ, Dept Mil Biomed Engn, Xian 710032, Peoples R China
来源
BIOENGINEERING-BASEL | 2025年 / 12卷 / 03期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
non-contact; blood pressure measurement; deep learning; radar; residual networks; transformer;
D O I
10.3390/bioengineering12030252
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Emerging radar sensing technology is revolutionizing cardiovascular monitoring by eliminating direct skin contact. This approach captures vital signs through electromagnetic wave reflections, enabling contactless blood pressure (BP) tracking while maintaining user comfort and privacy. We present a hierarchical neural framework that synergizes spatial and temporal feature learning for radar-driven, contactless BP monitoring. By employing advanced preprocessing techniques, the system captures subtle chest wall vibrations and their second-order derivatives, feeding dual-channel inputs into a hierarchical neural network. Specifically, Stage 1 deploys convolutional depth-adjustable lightweight residual blocks to extract spatial features from micro-motion characteristics, while Stage 2 employs a transformer architecture to establish correlations between these spatial features and BP periodic dynamic variations. Drawing on the intrinsic link between systolic (SBP) and diastolic (DBP) blood pressures, early estimates from Stage 2 are used to expand the feature set for the second-stage network, boosting its predictive power. Validation achieved clinically acceptable errors (SBP: -1.09 +/- 5.15 mmHg, DBP: -0.26 +/- 4.35 mmHg). Notably, this high degree of accuracy, combined with the ability to estimate BP at 2 s intervals, closely approximates real-time, beat-to-beat monitoring, representing a pivotal breakthrough in non-contact BP monitoring.
引用
收藏
页数:22
相关论文
共 57 条
[1]  
[Anonymous], 2023, Global report on hypertension: The race against a silent killer [PDF]. Retrieved March 27, 2024
[2]   Blood Pressure Estimation Using Pulse Transit Time From Bioimpedance and Continuous Wave Radar [J].
Buxi, Dilpreet ;
Redout, Jean-Michel ;
Yuce, Mehmet Rasit .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (04) :917-927
[3]  
Buxi D, 2015, IEEE ENG MED BIO, P5704, DOI 10.1109/EMBC.2015.7319687
[4]   Improved Hypertension Risk Assessment with Photoplethysmographic Recordings Combining Deep Learning and Calibration [J].
Cano, Jesus ;
Bertomeu-Gonzalez, Vicente ;
Facila, Lorenzo ;
Hornero, Fernando ;
Alcaraz, Raul ;
Rieta, Jose J. .
BIOENGINEERING-BASEL, 2023, 10 (12)
[5]  
Ebrahim MP, 2019, IEEE SYS MAN CYBERN, P3878, DOI 10.1109/SMC.2019.8914567
[6]   Contactless and continuous blood pressure measurement according to caPTT obtained from millimeter wave radar [J].
Geng, Fanglin ;
Bai, Zhongrui ;
Zhang, Hao ;
Yao, Yicheng ;
Liu, Changyu ;
Wang, Peng ;
Chen, Xianxiang ;
Du, Lidong ;
Li, Xiaoran ;
Han, Baoshi ;
Fang, Zhen .
MEASUREMENT, 2023, 218
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]   Brachialis Pulse Wave Measurements with Ultra-Wide Band and Continuous Wave Radar, Photoplethysmography and Ultrasonic Doppler Sensors [J].
Hellbrueck, Horst ;
Ardelt, Gunther ;
Wegerich, Philipp ;
Gehring, Hartmut .
SENSORS, 2021, 21 (01) :1-16
[9]   Cuffless Blood Pressure in clinical practice: challenges, opportunities and current limits. [J].
Henry, Benoit ;
Merz, Maxime ;
Hoang, Harry ;
Abdulkarim, Ghaith ;
Wosik, Jedrek ;
Schoettker, Patrick .
BLOOD PRESSURE, 2024, 33 (01)
[10]   Camera-Based Blood Pressure Monitoring Based on Multisite and Multiwavelength Pulse Transit Time Features [J].
Huang, Yukai ;
Huang, Dongmin ;
Huang, Jia ;
Wang, Guowei ;
Pan, Liping ;
Lu, Hongzhou ;
He, Min ;
Wang, Wenjin .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73