TetraFEM: Numerical Solution of Partial Differential Equations Using Tensor Train Finite Element Method

被引:2
作者
Kornev, Egor [1 ]
Dolgov, Sergey [1 ,2 ]
Perelshtein, Michael [1 ]
Melnikov, Artem [1 ]
机构
[1] Terra Quantum AG, Kornhausstr 25, CH-9000 St Gallen, Switzerland
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, England
关键词
tensor decompositions; tensor trains; finite element analysis; partial differential equations; incompressible Navier-Stokes equations; NAVIER-STOKES EQUATIONS; APPROXIMATION;
D O I
10.3390/math12203277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a methodology for the numerical solving of partial differential equations in 2D geometries with piecewise smooth boundaries via finite element method (FEM) using a Quantized Tensor Train (QTT) format. During the calculations, all the operators and data are assembled and represented in a compressed tensor format. We introduce an efficient assembly procedure of FEM matrices in the QTT format for curvilinear domains. The features of our approach include efficiency in terms of memory consumption and potential expansion to quantum computers. We demonstrate the correctness and advantages of the method by solving a number of problems, including nonlinear incompressible Navier-Stokes flow, in differently shaped domains.
引用
收藏
页数:19
相关论文
共 43 条
[1]   Extended Approach to the Asymptotic Behavior and Symmetric Solutions of Advanced Differential Equations [J].
Bazighifan, Omar ;
Ali, Ali Hasan ;
Mofarreh, Fatemah ;
Raffoul, Youssef N. .
SYMMETRY-BASEL, 2022, 14 (04)
[2]   SPECTRAL TENSOR-TRAIN DECOMPOSITION [J].
Bigoni, Daniele ;
Engsig-Karup, Allan P. ;
Marzouk, Youssef M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04) :A2405-A2439
[3]  
Blazek J., 2001, Computational fluid dynamics: principles and applications
[4]  
Brenner S.C., 2002, MATH THEORY FINITE E
[6]  
Ciarlet Philippr G., 2002, SIAM, DOI DOI 10.1137/1.9780898719208
[7]   BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Cangiani, A. ;
Manzini, G. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01) :199-214
[8]   Enrichment strategies for the simplicial linear finite elements [J].
Dell'Accio, Francesco ;
Di Tommaso, Filomena ;
Guessab, Allal ;
Nudo, Federico .
APPLIED MATHEMATICS AND COMPUTATION, 2023, 451
[9]   FAST SOLUTION OF PARABOLIC PROBLEMS IN THE TENSOR TRAIN/QUANTIZED TENSOR TRAIN FORMAT WITH INITIAL APPLICATION TO THE FOKKER-PLANCK EQUATION [J].
Dolgov, S. V. ;
Khoromskij, B. N. ;
Oseledets, I. V. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (06) :A3016-A3038
[10]   PRECONDITIONERS AND TENSOR PRODUCT SOLVERS FOR OPTIMAL CONTROL PROBLEMS FROM CHEMOTAXIS [J].
Dolgov, Sergey ;
Pearson, John W. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (06) :B1228-B1253