Electronic Metal-Support Interaction Induces Hydrogen Spillover and Platinum Utilization in Hydrogen Evolution Reaction

被引:7
|
作者
Feng, Yumei [1 ,2 ]
Xie, Yuhua [2 ]
Yu, Yingjie [1 ]
Chen, Yazhou [1 ]
Liu, Qingting [3 ]
Bao, Haifeng [1 ]
Luo, Fang [1 ,3 ]
Pan, Shuyuan [2 ]
Yang, Zehui [2 ]
机构
[1] Wuhan Text Univ, Coll Mat Sci & Engn, State Key Lab New Text Mat & Adv Proc Technol, Wuhan 430200, Peoples R China
[2] China Univ Geosci Wuhan, Fac Mat Sci & Chem, 388 Lumo Rd, Wuhan 430074, Peoples R China
[3] Hubei Univ Technol, Hubei Prov Key Lab Green Mat Light Ind, Wuhan 430068, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen evolution reaction; Electronic metal-support interaction; Hydrogen spillover; Tungsten sulfides; in situ Raman spectroscopy; CATALYTIC-ACTIVITY; HIGHLY EFFICIENT; CLUSTERS; NANOSHEETS;
D O I
10.1002/anie.202413417
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The substantial promotion of hydrogen evolution reaction (HER) catalytic performance relies on the breakup of the Sabatier principle, which can be achieved by the alternation of the support and electronic metal support interaction (EMSI) is noticed. Due to the utilization of tungsten disulfides as support for platinum (Pt@WS2), surprisingly, Pt@WS2 demands only 31 mV overpotential to attain 10 mA cm-2 in acidic HER test, corresponding to a 2.5-fold higher mass activity than benchmarked Pt/C. The pH dependent electrochemical measurements associated with H2-TPD and in situ Raman spectroscopy indicate a hydrogen spillover involved HER mechanism is confirmed. The WS2 support triggers a higher hydrogen binding strength for Pt leading to the increment in hydrogen concentration at Pt sites proved by upshifted d band center as well as lower Gibbs free energy of hydrogen, favourable for hydrogen spillover. Besides, the WS2 shows a comparably lower effect on Gibbs free energy for different Pt layers (-0.50 eV layer-1) than carbon black (-0.88 eV layer-1) contributing to a better Pt utilization. Also, the theoretical calculation suggests the hydrogen spillover occurs on the 3rd Pt layer in Pt@WS2; moreover, the energy barrier is lowered with increment in hydrogen coverage on Pt. Therefore, the boosted HER activity attributes to the EMSI effect caused hydrogen spillover and enhancement in Pt utilization efficiency.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Anchoring platinum clusters on lamellar MXene for efficient acidic hydrogen evolution reaction
    Jin, Shuwen
    Zhang, Guangyao
    Huo, Zhanyue
    Feng, Libei
    Liu, Mengyi
    Sun, Zhiyuan
    Khalafallah, Diab
    Wang, Jue
    Zhang, Qinfang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 126 : 476 - 483
  • [22] Breaking the activity and stability bottlenecks for acid hydrogen evolution by strong metal-support interaction between Pt nanoparticles and amorphous MoOx
    Ning, Bo
    Huang, Zhen-Feng
    Shi, Chengxiang
    Pan, Lun
    Gao, Ruijie
    Zhang, Xiangwen
    Zou, Ji-Jun
    CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (08) : 2218 - 2225
  • [23] Strong metal-support interaction boosts the electrocatalytic hydrogen evolution capability of Ru nanoparticles supported on titanium nitride
    Wang, Xin
    Yang, Xiaoli
    Pei, Guangxian
    Yang, Jifa
    Liu, Junzhe
    Zhao, Fengwang
    Jin, Fayi
    Jiang, Wei
    Ben, Haoxi
    Zhang, Lixue
    CARBON ENERGY, 2024, 6 (01)
  • [24] Metal-support interactions of 2D carbon-based heterogeneous catalysts for the hydrogen evolution reaction
    Feng, Weihang
    Zhang, Wei
    Lin, Quanying
    Zhang, Heshuang
    Qiao, Jingyuan
    Xia, Linhong
    Moloto, Nosipho
    He, Wei
    Sun, Zhengming
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (30) : 18866 - 18878
  • [25] Enhanced hydrogen evolution reaction in alkaline solution by constructing strong metal-support interaction on Pd-CeO2-x-NC hybrids
    Yu, Yalin
    Dong, Zhihao
    Tan, Ling
    He, Nannan
    Tang, Rong
    Fang, Jiang
    Chen, Huan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 611 : 554 - 563
  • [26] Platinum Atoms and Nanoparticles Embedded Porous Carbons for Hydrogen Evolution Reaction
    Kang, Jialing
    Wang, Mengjia
    Lu, Chenbao
    Ke, Changchun
    Liu, Pan
    Zhu, Jinhui
    Qiu, Feng
    Zhuang, Xiaodong
    MATERIALS, 2020, 13 (07)
  • [27] Tuning metal-support interaction of Pt-based electrocatalysts for hydrogen energy conversion
    Shenzhou Li
    Tanyuan Wang
    Qing Li
    Science China Chemistry, 2023, 66 : 3398 - 3414
  • [28] Tuning metal-support interaction of Pt-based electrocatalysts for hydrogen energy conversion
    Li, Shenzhou
    Wang, Tanyuan
    Li, Qing
    SCIENCE CHINA-CHEMISTRY, 2023, 66 (12) : 3398 - 3414
  • [29] Boron Nanosheet-Supported Rh Catalysts for Hydrogen Evolution: A New Territory for the Strong Metal-Support Interaction Effect
    Chen, Keng
    Wang, Zeming
    Wang, Liang
    Wu, Xiuzhen
    Hu, Bingjie
    Liu, Zheng
    Wu, Minghong
    NANO-MICRO LETTERS, 2021, 13 (01)
  • [30] Optimizing Atomically Dispersed Metal Electrocatalysts for Hydrogen Evolution: Chemical Coordination Effect and Electronic Metal Support Interaction
    Jiang, Su
    Xue, Dongping
    Zhang, Jia-Nan
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (14)