Deep Learning Segmentation of Chromogenic Dye RNAscope From Breast Cancer Tissue

被引:0
作者
Davidson, Andrew [1 ]
Morley-Bunker, Arthur [2 ]
Wiggins, George [2 ]
Walker, Logan [2 ]
Harris, Gavin [3 ]
Mukundan, Ramakrishnan [1 ]
Investigators, Kconfab [4 ,5 ]
机构
[1] Univ Canterbury, Dept Comp Sci & Software Engn, Christchurch, New Zealand
[2] Univ Otago, Dept Pathol & Biomed Sci, Christchurch, New Zealand
[3] Canterbury Hlth Labs, Christchurch, New Zealand
[4] Univ Melbourne, Sir Peter MacCallum Dept Oncol, Melbourne, Vic, Australia
[5] Peter MacCallum Canc Ctr, Melbourne, Vic, Australia
来源
JOURNAL OF IMAGING INFORMATICS IN MEDICINE | 2024年
基金
澳大利亚国家健康与医学研究理事会; 英国医学研究理事会;
关键词
Computational pathology; Image segmentation; Cancer; RNAscope; Deep learning; Machine learning;
D O I
10.1007/s10278-024-01301-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
RNAscope staining of breast cancer tissue allows pathologists to deduce genetic characteristics of the cancer by inspection at the microscopic level, which can lead to better diagnosis and treatment. Chromogenic RNAscope staining is easy to fit into existing pathology workflows, but manually analyzing the resulting tissue samples is time consuming. There is also a lack of peer-reviewed, performant solutions for automated analysis of chromogenic RNAscope staining. This paper covers the development and optimization of a novel deep learning method focused on accurate segmentation of RNAscope dots (which signify gene expression) from breast cancer tissue. The deep learning network is convolutional and uses ConvNeXt as its backbone. The upscaling portions of the network use custom, heavily regularized blocks to prevent overfitting and early convergence on suboptimal solutions. The resulting network is modest in size for a segmentation network and able to function well with little training data. This deep learning network was also able to outperform manual expert annotation at finding the positions of RNAscope dots, having a final F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{F}_\textbf{1}$$\end{document}-score of 0.745. In comparison, the expert inter-rater F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{F}_\textbf{1}$$\end{document}-score was 0.596.
引用
收藏
页码:1704 / 1721
页数:18
相关论文
共 21 条
  • [1] Abadi Martin, 2016, arXiv
  • [2] Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification
    Arganda-Carreras, Ignacio
    Kaynig, Verena
    Rueden, Curtis
    Eliceiri, Kevin W.
    Schindelin, Johannes
    Cardona, Albert
    Seung, H. Sebastian
    [J]. BIOINFORMATICS, 2017, 33 (15) : 2424 - 2426
  • [3] Current and future burden of breast cancer: Global statistics for 2020 and 2040
    Arnold, Melina
    Morgan, Eileen
    Rumgay, Harriet
    Mafra, Allini
    Singh, Deependra
    Laversanne, Mathieu
    Vignat, Jerome
    Gralow, Julie R.
    Cardoso, Fatima
    Siesling, Sabine
    Soerjomataram, Isabelle
    [J]. BREAST, 2022, 66 : 15 - 23
  • [4] Ba Jimmy Lei, 2016, arXiv
  • [5] Chollet Francois, 2015, Keras
  • [6] Zeiler MD, 2012, Arxiv, DOI arXiv:1212.5701
  • [7] Davidson A, 2024, Arxiv, DOI arXiv:2401.15886
  • [8] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [9] Digital Imaging in Pathology: Whole-Slide Imaging and Beyond
    Ghaznavi, Farzad
    Evans, Andrew
    Madabhushi, Anant
    Feldman, Michael
    [J]. ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 8, 2013, 8 : 331 - 359
  • [10] Graschew G, 2006, INT J COMPUT ASS RAD, V1, P119