On the cancellation problem for L-algebras

被引:0
作者
Ruan, Xianglong [1 ]
Liu, Xiaochuan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
关键词
Cartesian product; cancellation law; L-algebra; PARTIALLY ORDERED SETS; LAW;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the cancellation problem for the cartesian product of L-algebras. Firstly, we show that L-algebras with prime element 0 and L-algebras satisfying the condition (C) are cancellable. Furthermore, we also prove that the wedge-sum of cancellable L-algebras is cancellable and each L-algebra can be embedded into a cancellable L-algebra. Finally, we give a class of L-algebras satisfying the cancellation law which is different from the above L-algebras.
引用
收藏
页数:14
相关论文
共 31 条
[1]   THEORY OF BRAIDS [J].
ARTIN, E .
ANNALS OF MATHEMATICS, 1947, 48 (01) :101-125
[2]   A cancellation law for partially ordered sets and T0 spaces [J].
Banaschewski, B ;
Lowen, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) :3463-3466
[3]   THE CANCELLATION LAW FOR COMPACT HAUSDORFF SPACES AND VECTOR-VALUED BANACH-STONE THEOREMS [J].
BEHRENDS, E ;
PELANT, J .
ARCHIV DER MATHEMATIK, 1995, 64 (04) :341-343
[4]   ARTIN GROUPS AND COXETER GROUPS [J].
BRIESKORN, E ;
SAITO, K .
INVENTIONES MATHEMATICAE, 1972, 17 (04) :245-+
[5]   Results in L-algebras [J].
Ciungu, Lavinia Corina .
ALGEBRA UNIVERSALIS, 2021, 82 (01)
[6]  
Davey BrianA., 2002, Introduction to Lattices and Order, DOI 10.1017/CBO9780511809088
[7]   Garside groups [J].
Dehornoy, P .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2002, 35 (02) :267-306
[8]   GENERALIZED BRAID GROUPS [J].
DELIGNE, P .
INVENTIONES MATHEMATICAE, 1972, 17 (04) :273-&
[9]   Affine-ruled varieties without the Laurent cancellation property [J].
Dubouloz, Adrien ;
Poloni, Pierre-Marie .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 :822-834
[10]  
Eakin P., 1973, Lecture Notes in Math., V311, P61, DOI DOI 10.1007/BFB0068920