A method for long-distance traffic load reconstruction by fusing multi-source information

被引:0
|
作者
Chen, Pengtao [1 ]
Yang, Gan [1 ]
Mao, Mengfan [1 ]
Jin, Yang [1 ]
Chen, Shizhi [1 ]
Han, Wanshui [1 ]
机构
[1] Changan Univ, Highway Coll, Xian 710064, Peoples R China
基金
中国国家自然科学基金;
关键词
Bridge engineering; Traffic load reconstruction; Machine vision; Information fusion;
D O I
10.1016/j.engstruct.2025.120245
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Understanding the actual traffic load conditions on bridges is of significant importance for bridge safety and maintenance. Current traffic load reconstruction methods lack robustness in long-distance scenarios. To this end, a long-distance traffic load reconstruction method based on the fusion of multi-source data is proposed. Firstly, the coordinate attention mechanism is introduced to improve the YOLOX model. Next, the multiple vehicle sort (MultiVehiSORT) tracking algorithm, which incorporates the microscopic motion characteristics of vehicles, is proposed. Furthermore, a radar-vision fusion method is utilized to realize long-distance vehicle detection and tracking. Finally, spatiotemporal information and weight data of vehicles are fused, and traffic load characteristics are analyzed to further refine the weight information, thereby realizing complete reconstruction of traffic load information. Through the above, accurate reconstruction of traffic loads over longer distances can be achieved. This method is applied to a cross sea bridge - the Hong Kong-Zhuhai-Macao Bridge, and the results show that the mean average precision of improved YOLOX model realizes 97.71 %. The tracking multi-object tracking accuracy and the multi-object tracking precision of the MultiVehiSORT algorithm are 90.8 % and 76.6 %, respectively, with no ID switching phenomena occurred during tracking. This indicates that the method proposed in this paper realizes stable tracking of vehicle loads in long-distance. Based on this, the proposed multi-source information fusion method further realizes comprehensive reconstruction of long-distance traffic load information.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Reliability estimation for warship spares by fusing multi-source prior information
    Shao S.
    Liu H.
    Zhang Z.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2019, 41 (12): : 2905 - 2910
  • [2] An intelligent quality-based approach to fusing multi-source possibilistic information
    Bouhamed, Sonda Ammar
    Kallel, Imene Khanfir
    Yager, Ronald R.
    Bosse, Eloi
    Solaiman, Basel
    INFORMATION FUSION, 2020, 55 : 68 - 90
  • [3] Vehicle Heterogeneous Multi-Source Information Fusion Positioning Method
    Tang, Chengkai
    Wang, Chen
    Zhang, Lingling
    Zhang, Yi
    Song, Houbing
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (09) : 12597 - 12613
  • [4] Fault Diagnosis Method Based on Multi-Source Information Fusion
    Lei, Ming
    Liao, Dapeng
    Zhou, Chunsheng
    Ci, Wenbin
    Zhang, Hui
    INTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROL ENGINEERING (ICECE 2015), 2015, : 315 - 318
  • [5] Structural response reconstruction based on the information fusion of multi-source particle filters
    Yonghe Shi
    Hong Yin
    Zhenrui Peng
    Zenghui Wang
    Yu Bai
    Journal of Mechanical Science and Technology, 2023, 37 : 631 - 641
  • [6] Power generation forecasting for solar plants based on Dynamic Bayesian networks by fusing multi-source information
    Zhang, Qiongfang
    Yan, Hao
    Liu, Yongming
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 202
  • [7] Structural response reconstruction based on the information fusion of multi-source particle filters
    Shi, Yonghe
    Yin, Hong
    Peng, Zhenrui
    Wang, Zenghui
    Bai, Yu
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2023, 37 (02) : 631 - 641
  • [8] Multi-source information grey fusion method of torpedo loading reliability
    Liang Qing-wei
    Yang Cheng
    Lin Sheng
    Hao Xin-yu
    OCEAN ENGINEERING, 2021, 234
  • [9] A Novel Multi-Source Information Fusion Method Based on Dependency Interval
    Xu, Weihua
    Lin, Yufei
    Wang, Na
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (04): : 3180 - 3194
  • [10] Busbar fault diagnosis method based on multi-source information fusion
    Jiang, Xuebao
    Cao, Haiou
    Zhou, Chenbin
    Ren, Xuchao
    Shen, Jiaoxiao
    Yu, Jiayan
    FRONTIERS IN ENERGY RESEARCH, 2024, 12