Chlorophyll-a and suspended matter variability in a data-scarce coastal-estuarine ecosystem

被引:0
作者
Chowdhury, Masuma [1 ,2 ]
Caballero, Isabel [3 ]
de la Calle, Ignacio [1 ]
Laiz, Irene [2 ]
机构
[1] Quasar Sci Resources SL, Camino Ceudas 2, Madrid 28232, Spain
[2] Univ Cadiz, Inst Univ Invest Marina INMAR, Dept Fis Aplicada, Campus Excelencia Int Global Mar CEI MAR, Cadiz 11510, Spain
[3] Inst Ciencias Marinas Andalucia ICMAN CSIC, Dept Ecol & Gest Costera, Campus Univ Rio San Pedro,S-N,Puerto Real, Cadiz 11510, Spain
关键词
Water quality; Meghna estuary; Northern Bay of Bengal; Seasonal variability; Inter-annual variability; ENSO; SEA-SURFACE TEMPERATURE; INDIAN-OCEAN; MEGHNA ESTUARY; RIVER MOUTH; EL-NINO; LA-NINA; PHYTOPLANKTON; SEDIMENT; PATTERNS; DIPOLE;
D O I
10.1016/j.ecss.2024.108973
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
Analyzing the variability of chlorophyll-a (Chl-a) and total suspended matter (TSM) in estuarine and coastal environments is crucial for understanding ecosystem health, guiding environmental management decisions, and evaluating climate change impacts. Satellite remote sensing offers a powerful tool for this analysis due to its extensive spatial and temporal coverage. Although several algorithms exist for complex coastal and estuarine waters, long-term datasets such as GlobColor's Ocean Color (OC5) and neural network (NN) algorithms are frequently used for robust variability analysis. This study uses the GlobColor NN algorithm to investigate the seasonal and inter-annual variability of Chl-a and TSM in a data-scare region, namely the Meghna estuary in Bangladesh and its adjacent coastal fringe. The other algorithm (i.e. OC5), while offers the longest time series, cannot be used in this region due to the high number of invalid pixels. Therefore, this study examines different environmental factors (i.e. sea surface temperature (SST), photosynthetically active radiation (PAR), rainfall, zonal (ZWC) and meridional (MWC) wind components, and ocean currents) and climatic indices (i.e., El NinoSouthern Oscillation (ENSO) and Indian Ocean Dipole (IOD)) to understand their influence on the seasonal and inter-annual variability of Chl-a and TSM derived from the GlobColor NN algorithm. Empirical orthogonal function analysis identifies the seasonal signal as dominant in the study region. The seasonal cycle of Chl-a is influenced by factors including MWC, TSM, SST, and rainfall. In contrast, TSM seasonal variations are primarily driven by rainfall and MWC. Post-monsoon Chl-a inter-annual fluctuations are mainly linked to TSM inter-annual variability, with secondary influences from monsoon rainfall and the winter ENSO index. Inter-annual changes in TSM are primarily associated with the winter ENSO index and monsoon rainfall. This research elucidates the primary mechanisms influencing Chl-a and TSM variability in the Meghna estuary and its adjacent coast, thus advancing the understanding of the dynamics in the study region. The information obtained through this study is valuable for scientists, policymakers, and stakeholders involved in the sustainable management of the Meghna estuary and its coastal resources, particularly in the context of climate change.
引用
收藏
页数:14
相关论文
共 65 条
[31]   Distribution of suspended sediment in the coastal sea off the Ganges-Brahmaputra River mouth: observation from TM data [J].
Islam, MR ;
Begum, SF ;
Yamaguchi, Y ;
Ogawa, K .
JOURNAL OF MARINE SYSTEMS, 2002, 32 (04) :307-321
[32]   Residual flow in the Meghna Estuary on the coastline of Bangladesh [J].
Jakobsen, F ;
Azam, MH ;
Mahboob-ul-Kabir, M .
ESTUARINE COASTAL AND SHELF SCIENCE, 2002, 55 (04) :587-597
[33]   Sensitivity of the Bay of Bengal upper ocean to different winds and river input conditions [J].
Jana, Sudip ;
Gangopadhyay, Avijit ;
Lermusiaux, Pierre F. J. ;
Chakraborty, Arun ;
Sil, Sourav ;
Haley, Patrick J., Jr. .
JOURNAL OF MARINE SYSTEMS, 2018, 187 :206-222
[34]   Impact of seasonal river input on the Bay of Bengal simulation [J].
Jana, Sudip ;
Gangopadhyay, Avijit ;
Chakraborty, Arun .
CONTINENTAL SHELF RESEARCH, 2015, 104 :45-62
[35]   Unravelling region specific environmental drivers of phytoplankton across a complex marine domain (off SW Iberia) [J].
Krug, Lilian Anne ;
Platt, Trevor ;
Sathyendranath, Shubha ;
Barbosa, Ana B. .
REMOTE SENSING OF ENVIRONMENT, 2017, 203 :162-184
[36]  
Kumar S.P., 2010, IJMS, V393
[37]   The years of El Nino, La Nina, and interactions with the tropical Indian ocean [J].
Meyers, Gary ;
McIntosh, Peter ;
Pigot, Lidia ;
Pook, Mike .
JOURNAL OF CLIMATE, 2007, 20 (13) :2872-2880
[38]   Empirical Orthogonal Functions: The Medium is the Message [J].
Monahan, Adam H. ;
Fyfe, John C. ;
Ambaum, Maarten H. P. ;
Stephenson, David B. ;
North, Gerald R. .
JOURNAL OF CLIMATE, 2009, 22 (24) :6501-6514
[39]   Spatial and temporal variability of phytoplankton in the Gulf of Cadiz through remote sensing images [J].
Navarro, Gabriel ;
Ruiz, Javier .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2006, 53 (11-13) :1241-1260
[40]   ENSO theory [J].
Neelin, JD ;
Battisti, DS ;
Hirst, AC ;
Jin, FF ;
Wakata, Y ;
Yamagata, T ;
Zebiak, SE .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1998, 103 (C7) :14261-14290