A Once-Calibration Brain-Computer Interface to Enhance Convenience for Continuous BCI Interventions in Stroke Patients

被引:1
作者
Rao, Zuguang [1 ,2 ]
Zhang, Rui [3 ,4 ]
He, Shenghong [1 ]
Zhou, Yajun [2 ,5 ]
Lu, Zilin [1 ,2 ]
Li, Kendi [1 ,2 ]
Li, Yuanqing [1 ,2 ]
机构
[1] South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Peoples R China
[2] Pazhou Lab, Res Ctr Brain Comp Interface, Guangzhou 510330, Peoples R China
[3] Dongguan Univ Technol, Sch Elect Engn & Intelligentizat, Dongguan 523808, Peoples R China
[4] Pazhou Lab, Guangzhou 510330, Peoples R China
[5] Res Ctr Brain Comp Interface, Pazhou Lab, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Calibration; Stroke (medical condition); Electroencephalography; Motors; Brain modeling; Transfer learning; Accuracy; Sensors; Iron; Feature extraction; Brain-computer interface (BCI); continuous BCI interventions; convenience; motor imagery (MI); once-calibration strategy (ONCS); personalized channel selection (PCS); CONVOLUTIONAL NEURAL-NETWORK; MOTOR IMAGERY; FUNCTIONAL REORGANIZATION; OSCILLATORY ACTIVITY; CHANNEL SELECTION; UPPER-LIMB; EEG; CLASSIFICATION; REHABILITATION;
D O I
10.1109/JSEN.2024.3510059
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain-computer interfaces (BCIs) provide a means of translating neural activity into movement for stroke rehabilitation. Electroencephalography (EEG)-based motor imagery (MI) is a cognitive strategy to enhance motor recovery after stroke. However, traditional MI-BCI systems require extensive calibration before conducting online experiments, thus constraining their practicality. To enhance convenience, we propose a once-calibration strategy (ONCS) that allows each subject to perform only one calibration in continuous BCI interventions over one month. By using supervised and transfer learning to update the model with previous online data, repeated calibrations are eliminated. Furthermore, personalized channel selection (PCS) is designed to reduce the number of channels through the lowest event-related desynchronization (ERD). Compared to the traditional repetitive calibration strategy (RECS), RECS for intra- and inter-subject models, the proposed ONCS for inter-subject (ONCS-inter) models achieve better classification performance using 28 channels. Wherein, the ONCS-inter shows statistically significant improvements (P < 0.05, one-tailed test). When using PCS for channel selection, ONCS-inter outperforms ONCS for intra-subject (ONCS-intra) (P < 0.01$ , for 16, 18, . . . , 28 channels, two-tailed test) and surpasses RECS (P < 0.05$ for all channels, two-tailed test). Remarkably, ONCS-inter exceeds the best results achieved with traditional RECS, even with only two channels. Extensive comparison and ablation studies demonstrate the effectiveness of our proposed ONCS combined with inter-subject models and a few channels in maintaining classification accuracy. The proposed ONCS with PCS holds promise for enhancing the convenience of continuous BCI interventions within one month for stroke patients.
引用
收藏
页码:3949 / 3963
页数:15
相关论文
共 73 条
[1]  
Abadi Martin, 2016, Proceedings of OSDI '16: 12th USENIX Symposium on Operating Systems Design and Implementation. OSDI '16, P265
[2]   Brain-Computer Interface for Neurorehabilitation of Upper Limb After Stroke [J].
Ang, Kai Keng ;
Guan, Cuntai .
PROCEEDINGS OF THE IEEE, 2015, 103 (06) :944-953
[3]   A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke [J].
Ang, Kai Keng ;
Chua, Karen Sui Geok ;
Phua, Kok Soon ;
Wang, Chuanchu ;
Chin, Zheng Yang ;
Kuah, Christopher Wee Keong ;
Low, Wilson ;
Guan, Cuntai .
CLINICAL EEG AND NEUROSCIENCE, 2015, 46 (04) :310-320
[4]   Filter bank common spatial pattern algorithm on BCI competition IV Datasets 2a and 2b [J].
Ang, Kai Keng ;
Chin, Zheng Yang ;
Wang, Chuanchu ;
Guan, Cuntai ;
Zhang, Haihong .
FRONTIERS IN NEUROSCIENCE, 2012, 6
[5]   Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI [J].
Arvaneh, Mahnaz ;
Guan, Cuntai ;
Ang, Kai Keng ;
Quek, Chai .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (06) :1865-1873
[6]   Weighted Transfer Learning for Improving Motor Imagery-Based Brain-Computer Interface [J].
Azab, Ahmed M. ;
Mihaylova, Lyudmila ;
Ang, Kai Keng ;
Arvaneh, Mahnaz .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (07) :1352-1359
[7]   Movement-Related EEG Oscillations of Contralesional Hemisphere Discloses Compensation Mechanisms of Severely Affected Motor Chronic Stroke Patients [J].
Barios, Juan A. ;
Ezquerro, Santiago ;
Bertomeu-Motos, Arturo ;
Catalan, Jose M. ;
Sanchez-Aparicio, Jose M. ;
Donis-Barber, Luis ;
Fernandez, Eduardo ;
Garcia-Aracil, Nicolas .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (12)
[8]   A Generic Transferable EEG Decoder for Online Detection of Error Potential in Target Selection [J].
Bhattacharyya, Saugat ;
Konar, Amit ;
Tibarewala, D. N. ;
Hayashibe, Mitsuhiro .
FRONTIERS IN NEUROSCIENCE, 2017, 11
[9]   Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke [J].
Biasiucci, A. ;
Leeb, R. ;
Iturrate, I. ;
Perdikis, S. ;
Al-Khodairy, A. ;
Corbet, T. ;
Schnider, A. ;
Schmidlin, T. ;
Zhang, H. ;
Bassolino, M. ;
Viceic, D. ;
Vuadens, P. ;
Guggisberg, A. G. ;
Millan, J. D. R. .
NATURE COMMUNICATIONS, 2018, 9
[10]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56