HYPERBOLICITY FOR LARGE AUTOMORPHISM GROUPS OF PROJECTIVE SURFACES

被引:0
作者
Cantat, Serge [1 ]
Dujardin, Romain [2 ,3 ]
机构
[1] IRMAR, Campus Beaulieu,bat 22-23,263 Ave du Gen Leclerc,C, F-35042 Rennes, France
[2] Sorbonne Univ, F-75005 Paris, France
[3] Univ Paris Cite, Lab Probabil Stat & Modelisat LPSM, F-75005 Paris, France
来源
JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES | 2025年 / 12卷
基金
欧洲研究理事会;
关键词
Uniform expansion; Margulis function; invariance principle; random holomorphic dy- namics; automorphisms of K3 surfaces; DYNAMICS;
D O I
10.5802/jep.294
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
- We study the hyperbolicity properties of the action of a non-elementary automorphism group on a compact complex surface, with an emphasis on K3 and Enriques surfaces. A first result is that when such a group contains parabolic elements, Zariski diffuse invariant measures automatically have non-zero Lyapunov exponents. In combination with our previous work, this leads to simple criteria for a uniform expansion property on the whole surface, for groups with and without parabolic elements. This, in turn, has strong consequences on the dynamics: description of orbit closures, equidistribution, ergodicity properties, etc. Along the way, we provide a reference discussion on uniform expansion of non-linear discrete group actions on compact (real) manifolds and the construction of Margulis functions under optimal moment conditions.
引用
收藏
页数:61
相关论文
共 53 条
[1]  
[Anonymous], 2023, J. reine angew. Math., P1
[2]  
[Anonymous], 2007, V. I. BOGACHEV-Measure theory, VII
[3]  
[Anonymous], 2010, Quelques aspects des systemes dynamiques polynomiaux, Panoramas & Syntheses, V30, P13
[4]  
[Anonymous], 2024, Compos. Math., V160, P120
[5]  
[Anonymous], 2016, Ergeb. Math. Grenzgeb., V62
[6]   Extremal exponents of random products of conservative diffeomorphisms [J].
Barrientos, Pablo G. ;
Malicet, Dominique .
MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (3-4) :1185-1207
[7]   RANDOM WALKS WITH BOUNDED FIRST MOMENT ON FINITE-VOLUME SPACES [J].
Benard, Timothee ;
de Saxce, Nicolas .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2022, 32 (04) :687-724
[8]   Stationary measures and invariant subsets of homogeneous spaces (III) [J].
Benoist, Yves ;
Quint, Jean-Francois .
ANNALS OF MATHEMATICS, 2013, 178 (03) :1017-1059
[9]   On Herman's positive entropy conjecture [J].
Berger, Pierre ;
Turaev, Dmitry .
ADVANCES IN MATHEMATICS, 2019, 349 :1234-1288
[10]  
BIERSTONE E, 1988, PUBL MATH-PARIS, P5