Cross-modality fusion with EEG and text for enhanced emotion detection in English writing

被引:1
|
作者
Wang, Jing [1 ]
Zhang, Ci [2 ]
机构
[1] Henan Polytech Univ, Sch Foreign Languages, Jiaozuo, Peoples R China
[2] Wenzhou Univ, Coll Foreign Languages, Wenzhou, Peoples R China
来源
FRONTIERS IN NEUROROBOTICS | 2025年 / 18卷
关键词
emotion detection; EEG; textual analysis; transformer; cross-modality fusion;
D O I
10.3389/fnbot.2024.1529880
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Introduction Emotion detection in written text is critical for applications in human-computer interaction, affective computing, and personalized content recommendation. Traditional approaches to emotion detection primarily leverage textual features, using natural language processing techniques such as sentiment analysis, which, while effective, may miss subtle nuances of emotions. These methods often fall short in recognizing the complex, multimodal nature of human emotions, as they ignore physiological cues that could provide richer emotional insights.Methods To address these limitations, this paper proposes Emotion Fusion-Transformer, a cross-modality fusion model that integrates EEG signals and textual data to enhance emotion detection in English writing. By utilizing the Transformer architecture, our model effectively captures contextual relationships within the text while concurrently processing EEG signals to extract underlying emotional states. Specifically, the Emotion Fusion-Transformer first preprocesses EEG data through signal transformation and filtering, followed by feature extraction that complements the textual embeddings. These modalities are fused within a unified Transformer framework, allowing for a holistic view of both the cognitive and physiological dimensions of emotion.Results and discussion Experimental results demonstrate that the proposed model significantly outperforms text-only and EEG-only approaches, with improvements in both accuracy and F1-score across diverse emotional categories. This model shows promise for enhancing affective computing applications by bridging the gap between physiological and textual emotion detection, enabling more nuanced and accurate emotion analysis in English writing.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Cross-modality feature fusion for night pedestrian detection
    Feng, Yong
    Luo, Enbo
    Lu, Hai
    Zhai, SuWei
    FRONTIERS IN PHYSICS, 2024, 12
  • [2] Cross-modality complementary information fusion for multispectral pedestrian detection
    Yan, Chaoqi
    Zhang, Hong
    Li, Xuliang
    Yang, Yifan
    Yuan, Ding
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (14): : 10361 - 10386
  • [3] Cross-modality complementary information fusion for multispectral pedestrian detection
    Chaoqi Yan
    Hong Zhang
    Xuliang Li
    Yifan Yang
    Ding Yuan
    Neural Computing and Applications, 2023, 35 : 10361 - 10386
  • [4] Cross-Modality Learning by Exploring Modality Interactions for Emotion Reasoning
    Tran, Thi-Dung
    Ho, Ngoc-Huynh
    Pant, Sudarshan
    Yang, Hyung-Jeong
    Kim, Soo-Hyung
    Lee, Gueesang
    IEEE ACCESS, 2023, 11 : 56634 - 56648
  • [5] Temporal-enhanced Cross-modality Fusion Network for Video Sentence Grounding
    Lv, Zezhong
    Su, Bing
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1487 - 1492
  • [6] Self-attention Cross-modality Fusion Network for Cross-modality Person Re-identification
    Du P.
    Song Y.-H.
    Zhang X.-Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (06): : 1457 - 1468
  • [7] Cascaded Cross-Modality Fusion Network for 3D Object Detection
    Chen, Zhiyu
    Lin, Qiong
    Sun, Jing
    Feng, Yujian
    Liu, Shangdong
    Liu, Qiang
    Ji, Yimu
    Xu, He
    SENSORS, 2020, 20 (24) : 1 - 14
  • [8] Illumination-Aware Cross-Modality Differential Fusion Multispectral Pedestrian Detection
    Wang, Chishe
    Qian, Jinjin
    Wang, Jie
    Chen, Yuting
    ELECTRONICS, 2023, 12 (17)
  • [9] Attention-based Cross-Modality Multiscale Fusion for Multispectral Pedestrian Detection
    Hui, Zhou
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (11) : 1244 - 1253
  • [10] MCAFNet: Multiscale cross-modality adaptive fusion network for multispectral object detection
    Zheng, Shangpo
    Liu, Junfeng
    Jun, Zeng
    DIGITAL SIGNAL PROCESSING, 2025, 159