Fluorocarbon interlayer enhancing fast ion transport for low-temperature lithium metal batteries

被引:0
作者
Yang, Zhen [1 ]
Wang, Changding [3 ]
Wang, Zhongsheng [1 ]
He, Siru [4 ,5 ]
You, Tiancheng [1 ]
Wang, An [1 ]
Jin, Youliang [1 ]
Mei, Lin [1 ]
Huang, Shaozhen [1 ]
Chen, Yuejiao [1 ]
Chen, Libao [1 ,2 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[2] Cent South Univ, Natl Energy Met Resources & New Mat Key Lab, Changsha 410083, Peoples R China
[3] Chongqing Univ, Natl Innovat Ctr Ind Educ Integrat Energy Storage, Sch Elect Engn, State Key Lab Power Transmiss Equipment Technol, Chongqing 400044, Peoples R China
[4] Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[5] SUSTech Energy Inst Carbon Neutral, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Dry friction; Fluorocarbon interlayer; Modified interlayer; Lithium metal anode; Low temperature; ELECTROLYTES; ANODE;
D O I
10.1016/j.jcis.2025.02.199
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal batteries optimized for low-temperature conditions are essential for use in cold climate applications. Nevertheless, they are hindered by the markedly reduced kinetics of lithium-ion transport in the vicinity of the lithium metal anode under low-temperature conditions. In contrast to the commonly used electrolyte engineering approaches, this study introduces a design strategy of using a functional fluorocarbon interlayer to reconstruct the surface of the lithium foil (Li@GF), aiming to effectively enhance the electrochemical reaction kinetics of the lithium metal anode at low temperatures. Extensive experimental and theoretical investigations demonstrate that the fluorocarbon interlayer exhibits improved lithiophilicity and provides multiple ionic conductive pathways, thereby promoting uniform and rapid lithium ion transport at the interface. The Li (Ni0.8Co0.1Mn0.1)O2 (NCM811)||Li@GF full cells exhibit a commercial-grade capacity of 84.34 mAh g-1 and maintain an impressive capacity retention of 93.3 % after 300 cycles at-40 degrees C. The strategic design of a functional interphase aimed at improving ion transfer kinetics offers new perspectives for the advancement of lithium metal batteries characterized by high areal capacity and prolonged longevity under low-temperature conditions.
引用
收藏
页数:11
相关论文
共 53 条
[21]   Electrode potential influences the reversibility of lithium-metal anodes [J].
Ko, Seongjae ;
Obukata, Tomohiro ;
Shimada, Tatau ;
Takenaka, Norio ;
Nakayama, Masanobu ;
Yamada, Atsuo ;
Yamada, Yuki .
NATURE ENERGY, 2022, 7 (12) :1217-1224
[22]   Interfacial dual-modulation through deoxygenation effect and tuning hydrogen-bonding environment toward highly reversible Zn metal anodes [J].
Li, Canglong ;
Jiang, Xiaozhi ;
Qi, Hongli ;
Chen, Dongping ;
You, Tiancheng ;
Huang, Shaozhen ;
Yu, Huaming ;
Huang, Yang ;
Rao, Mingjun ;
Li, Guanghui ;
Xu, Bingang ;
Chen, Yuejiao ;
Chen, Libao .
ENERGY STORAGE MATERIALS, 2025, 75
[23]   Locking Active Li Metal through Localized Redistribution of Fluoride Enabling Stable Li-Metal Batteries [J].
Li, Guocheng ;
Duan, Xiangrui ;
Liu, Xueting ;
Zhan, Renming ;
Wang, Xiancheng ;
Du, Junmou ;
Chen, Zihe ;
Li, Yuanjian ;
Cai, Zhao ;
Shen, Yue ;
Sun, Yongming .
ADVANCED MATERIALS, 2023, 35 (02)
[24]   Molybdenum dialkyphosphorodithioate-derived artificial solid-electrolyte interface enabling stable lithium metal anodes [J].
Li, Wenhao ;
Huang, Shaozhen ;
Zhang, Yu ;
Long, Kecheng ;
Qing, Piao ;
Wu, Yaqin ;
An, Shengli ;
Wu, Zhibin ;
Chen, Libao .
ENERGY STORAGE MATERIALS, 2024, 65
[25]   Hybrid Polymer-Alloy-Fluoride Interphase Enabling Fast Ion Transport Kinetics for Low-Temperature Lithium Metal Batteries [J].
Li, Yuanjian ;
Mao, Eryang ;
Min, Zhiwen ;
Cai, Zhao ;
Chen, Zihe ;
Fu, Lin ;
Duan, Xiangrui ;
Wang, Lingyue ;
Zhang, Chang ;
Lu, Ziheng ;
Liu, Wei ;
Seh, Zhi Wei ;
Sun, Yongming .
ACS NANO, 2023, 17 (19) :19459-19469
[26]   Working Principles of Lithium Metal Anode in Pouch Cells [J].
Liu, He ;
Sun, Xin ;
Cheng, Xin-Bing ;
Guo, Cong ;
Yu, Feng ;
Bao, Weizhai ;
Wang, Tao ;
Li, Jingfa ;
Zhang, Qiang .
ADVANCED ENERGY MATERIALS, 2022, 12 (47)
[27]   Designing three-dimensional lithiophilic dual-skeletons-supported lithium metal anodes for long-life lithium metal batteries [J].
Liu, Xinsheng ;
Long, Kecheng ;
Qing, Piao ;
Huang, Shaozhen ;
Xiao, Pengfei ;
Ling, Canhui ;
Wu, Zhibin ;
Chen, Libao .
SCIENCE CHINA-MATERIALS, 2023, 66 (11) :4349-4356
[28]   Green mechanochemical Li foil surface reconstruction toward long-life Li-metal pouch cells [J].
Long, Kecheng ;
Huang, Shaozhen ;
Wang, Han ;
Wang, Anbang ;
Chen, Yuejiao ;
Liu, Zhijian ;
Zhang, Yu ;
Wu, Zhibin ;
Wang, Weikun ;
Chen, Libao .
ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (01) :260-273
[29]   High interfacial capacitance enabled stable lithium metal anode for practical lithium metal pouch cells [J].
Long, Kecheng ;
Huang, Shaozhen ;
Wang, Han ;
Jin, Zhaoqing ;
Wang, Anbang ;
Wang, Zhongming ;
Qing, Piao ;
Liu, Zhijian ;
Chen, Libao ;
Mei, Lin ;
Wang, Weikun .
ENERGY STORAGE MATERIALS, 2023, 58 :142-154
[30]   Lithiophilic NiO hexagonal plates decorated Ni collector guiding uniform lithium plating for stable lithium metal anode [J].
Lu, Weiyi ;
Wu, Chen ;
Wei, Weifeng ;
Ma, Jianmin ;
Chen, Libao ;
Chen, Yuejiao .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (42) :24262-24270