Fluorocarbon interlayer enhancing fast ion transport for low-temperature lithium metal batteries

被引:0
作者
Yang, Zhen [1 ]
Wang, Changding [3 ]
Wang, Zhongsheng [1 ]
He, Siru [4 ,5 ]
You, Tiancheng [1 ]
Wang, An [1 ]
Jin, Youliang [1 ]
Mei, Lin [1 ]
Huang, Shaozhen [1 ]
Chen, Yuejiao [1 ]
Chen, Libao [1 ,2 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[2] Cent South Univ, Natl Energy Met Resources & New Mat Key Lab, Changsha 410083, Peoples R China
[3] Chongqing Univ, Natl Innovat Ctr Ind Educ Integrat Energy Storage, Sch Elect Engn, State Key Lab Power Transmiss Equipment Technol, Chongqing 400044, Peoples R China
[4] Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[5] SUSTech Energy Inst Carbon Neutral, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Dry friction; Fluorocarbon interlayer; Modified interlayer; Lithium metal anode; Low temperature; ELECTROLYTES; ANODE;
D O I
10.1016/j.jcis.2025.02.199
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal batteries optimized for low-temperature conditions are essential for use in cold climate applications. Nevertheless, they are hindered by the markedly reduced kinetics of lithium-ion transport in the vicinity of the lithium metal anode under low-temperature conditions. In contrast to the commonly used electrolyte engineering approaches, this study introduces a design strategy of using a functional fluorocarbon interlayer to reconstruct the surface of the lithium foil (Li@GF), aiming to effectively enhance the electrochemical reaction kinetics of the lithium metal anode at low temperatures. Extensive experimental and theoretical investigations demonstrate that the fluorocarbon interlayer exhibits improved lithiophilicity and provides multiple ionic conductive pathways, thereby promoting uniform and rapid lithium ion transport at the interface. The Li (Ni0.8Co0.1Mn0.1)O2 (NCM811)||Li@GF full cells exhibit a commercial-grade capacity of 84.34 mAh g-1 and maintain an impressive capacity retention of 93.3 % after 300 cycles at-40 degrees C. The strategic design of a functional interphase aimed at improving ion transfer kinetics offers new perspectives for the advancement of lithium metal batteries characterized by high areal capacity and prolonged longevity under low-temperature conditions.
引用
收藏
页数:11
相关论文
共 53 条
[1]   Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries [J].
Cao, Jiaqi ;
Shi, Yuansheng ;
Gao, Aosong ;
Du, Guangyuan ;
Dilxat, Muhtar ;
Zhang, Yongfei ;
Cai, Mohang ;
Qian, Guoyu ;
Lu, Xueyi ;
Xie, Fangyan ;
Sun, Yang ;
Lu, Xia .
NATURE COMMUNICATIONS, 2024, 15 (01)
[2]   Retuning Solvating Ability of Ether Solvent by Anion Chemistry toward 4.5 V Class Li Metal Battery [J].
Chai, Dandan ;
Yan, Haotian ;
Wang, Xin ;
Li, Xiang ;
Fu, Yongzhu .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (08)
[3]   Organic Nitrate Additive for High-Rate and Large-Capacity Lithium Metal Anode in Carbonate Electrolyte [J].
Chen, Chao ;
Zhou, Qingfeng ;
Li, Xiaodan ;
Zhao, Bote ;
Chen, Yunhua ;
Xiong, Xunhui .
SMALL METHODS, 2024, 8 (01)
[4]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[5]   High-Energy Rechargeable Metallic Lithium Battery at-70°C Enabled by a Cosolvent Electrolyte [J].
Dong, Xiaoli ;
Lin, Yuxiao ;
Li, Panlong ;
Ma, Yuanyuan ;
Huang, Jianhang ;
Bin, Duan ;
Wang, Yonggang ;
Qi, Yue ;
Xia, Yongyao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (17) :5623-5627
[6]   All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents [J].
Fan, Xiulin ;
Ji, Xiao ;
Chen, Long ;
Chen, Ji ;
Deng, Tao ;
Han, Fudong ;
Yue, Jie ;
Piao, Nan ;
Wang, Ruixing ;
Zhou, Xiuquan ;
Xiao, Xuezhang ;
Chen, Lixin ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (10) :882-890
[7]   Production of high-energy 6-Ah-level Li | |LiNi0.83Co0.11Mn0.06O2 multi-layer pouch cells via negative electrode protective layer coating strategy [J].
Feng, Yangyang ;
Li, Yong ;
Lin, Jing ;
Wu, Huyue ;
Zhu, Lei ;
Zhang, Xiang ;
Zhang, Linlin ;
Sun, Chuan-Fu ;
Wu, Maoxiang ;
Wang, Yaobing .
NATURE COMMUNICATIONS, 2023, 14 (01)
[8]   Toward Ultralow Temperature Lithium Metal Batteries: Advancing the Feasibility of 1,3-Dioxolane Based Localized High-Concentration Electrolytes via Lithium Nitrate [J].
Fu, Han ;
Ye, Xue ;
Zhang, Yixiao ;
Zhong, Yu ;
Wang, Xiuli ;
Gu, Changdong ;
Tu, Jiangping .
ADVANCED ENERGY MATERIALS, 2024, 14 (39)
[9]   Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface [J].
Gao, Yue ;
Rojas, Tomas ;
Wang, Ke ;
Liu, Shuai ;
Wang, Daiwei ;
Chen, Tianhang ;
Wang, Haiying ;
Ngo, Anh T. ;
Wang, Donghai .
NATURE ENERGY, 2020, 5 (07) :534-542
[10]   Recent advances on cellulose-based solid polymer electrolytes [J].
Gong, Xiaoqi ;
Wang, Jiasheng ;
Zhong, Linfeng ;
Qi, Guangsheng ;
Liu, Fujie ;
Pan, Yaozheng ;
Yang, Fan ;
Wang, Xiaotong ;
Li, Jing ;
Li, Longjie ;
Liu, Cong ;
Yu, Dingshan .
INDUSTRIAL CHEMISTRY & MATERIALS, 2025, 3 (01) :31-48