CLASSIFICATION OF PULMONARY EMBOLISM ON COMPUTED TOMOGRAPHY ANGIOGRAPHY USING ARTIFICIAL INTELLIGENCE

被引:0
作者
Silva, Luan [1 ,3 ]
Carolina, Maria [1 ]
Ribeiro, Guilherme [1 ]
Ortiz, Thiago [1 ,2 ]
Victor, Paulo [1 ,2 ]
Mendes, Giovanna [1 ]
de Paiva, Joselisa [1 ]
Calixto, Wesley [2 ]
Rittner, Leticia [1 ,4 ]
Loureiro, Rafael [1 ]
Reis, Marcio [1 ]
Soares, Anderson [3 ]
机构
[1] Hosp Israelita Albert Einstein, Sao Paulo, Brazil
[2] Univ Fed Goias, Elect Mech & Comp Engn Sch, Goiania, Go, Brazil
[3] Univ Fed Goias, Inst Informat INF, Goiania, Go, Brazil
[4] Univ Estadual Campinas, Dept Comp Engn & Ind Automat, Sao Paulo, Brazil
来源
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024 | 2024年
关键词
Pulmonary Embolism; Deep Learning; CT pulmonary angiography; Convolutional Neural Network;
D O I
10.1109/ISBI56570.2024.10635197
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pulmonary embolism is a serious condition in which a blood clot (thrombus) forms in a deep vein, usually in the legs (deep vein thrombosis), and then travels to the lungs and blocks the pulmonary artery. The diagnosis of pulmonary embolism is a complex process as there is a variety of clinical presentations and the symptoms overlap with other medical conditions. This study aims to fill a gap by proposing a classification model for pulmonary embolism, trained on limited annotated public data and validated on a comprehensive in-house dataset. The results showed that the classification model is promising in detecting negative cases of pulmonary embolism and has satisfactory precision (95%) and recall (96%). Its efficiency in avoiding false-positive diagnoses indicates its reliability in identifying patients without pulmonary embolism, which plays an important role in clinical practice.
引用
收藏
页数:5
相关论文
共 19 条
[1]   How artificial intelligence improves radiological interpretation in suspected pulmonary embolism [J].
Ben Cheikh, Alexandre ;
Gorincour, Guillaume ;
Nivet, Hubert ;
May, Julien ;
Seux, Mylene ;
Calame, Paul ;
Thomson, Vivien ;
Delabrousse, Eric ;
Crombe, Amandine .
EUROPEAN RADIOLOGY, 2022, 32 (09) :5831-5842
[2]   WEAKLY SUPERVISED MULTIMODAL 30-DAY ALL-CAUSE MORTALITY PREDICTION FOR PULMONARY EMBOLISM PATIENTS [J].
Cahan, Noa ;
Marom, Edith M. ;
Soffer, Shelly ;
Barash, Yiftach ;
Konen, Eli ;
Klang, Eyal ;
Greenspan, Hayit .
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
[3]   Computer Aided Detection of Pulmonary Embolism Using Multi-Slice Multi-Axial Segmentation [J].
Cano-Espinosa, Carlos ;
Cazorla, Miguel ;
Gonzalez, German .
APPLIED SCIENCES-BASEL, 2020, 10 (08)
[4]  
Chung JY, 2014, Arxiv, DOI [arXiv:1412.3555, DOI 10.48550/ARXIV.1412.3555]
[5]   The RSNA Pulmonary Embolism CT Dataset [J].
Cob, Errol ;
Kitamura, Felipe C. ;
Hobbs, Stephen B. ;
Wu, Carol C. ;
Lungren, Matthew P. ;
Prevedello, Luciano M. ;
Kalpathy-Cramer, Jayashree ;
Ball, Robyn L. ;
Shih, George ;
Stein, Anouk ;
Halabi, Safwan S. ;
Akinmakas, Emre ;
Law, Meng ;
Kumar, Parveen ;
Manzalawi, Karam A. ;
Rubio, Dennis Charles Nelson ;
Sechrist, Jacob W. ;
Germaine, Pauline ;
Lopez, Eva Castro ;
Amerio, Tomas ;
Gupta, Puslpender ;
Jain, Manoj ;
Kay, Fernando U. ;
Lin, Cheng Ting ;
Sen, Saugata ;
Revels, Jonathan Wesley ;
Brussaarel, Carok C. ;
Mongan, John .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (02) :1-7
[6]   Measuring and managing radiologist workload: Measuring radiologist reporting times using data from a Radiology Information System [J].
Cowan, Ian A. ;
MacDonald, Sharyn L. S. ;
Floyd, Richard A. .
JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2013, 57 (05) :558-566
[7]  
Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947
[8]  
Graves A, 2012, STUD COMPUT INTELL, V385, P37
[9]  
Hochreiter Sepp, 1997, Neural Computation, V9, P11
[10]  
Huang SC, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-00310-6