ABSOLUTE ZETA FUNCTIONS AND PERIODICITY OF QUANTUM WALKS ON CYCLES

被引:0
作者
Akahori, Jiro [1 ]
Konno, Norio [1 ]
Sato, Iwao [2 ]
Tamura, Yuma [1 ]
机构
[1] Ritsumeikan Univ, Coll Sci & Engn, Nojihigashi, Kusatsu 5258577, Japan
[2] Oyama Natl Coll Technol, Oyama, Tochigi 3230806, Japan
关键词
absolute zeta function; periodicity; quantum walk; cycle;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The quantum walk is a quantum counterpart of the classical random walk. On the other hand, absolute zeta functions can be considered as zeta functions over F-1. This study presents a connection between quantum walks and absolute zeta functions. In this paper, we focus on Hadamard walks and 3-state Grover walks on cycle graphs. The Hadamard walks and the Grover walks are typical models of the quantum walks. We consider the periods and zeta functions of such quantum walks. Moreover, we derive the explicit forms of the absolute zeta functions of corresponding zeta functions. Also, it is shown that our zeta functions of quantum walks are absolute automorphic forms.
引用
收藏
页数:15
相关论文
共 22 条
[1]   ABSOLUTE ZETA FUNCTIONS FOR ZETA FUNCTIONS OF QUANTUM CELLULAR AUTOMATA [J].
Akahori, Jiro ;
Konno, Norio ;
Sato, Iwao .
QUANTUM INFORMATION & COMPUTATION, 2023, 23 (15-16) :1261-1274
[2]  
Andrews G.E., 1999, Encyclopedia of Mathematics and its Applications
[3]   Schemes over F1 and zeta functions [J].
Connes, Alain ;
Consani, Caterina .
COMPOSITIO MATHEMATICA, 2010, 146 (06) :1383-1415
[4]   Quantum state revivals in quantum walks on cycles [J].
Dukes, Phillip R. .
RESULTS IN PHYSICS, 2014, 4 :189-197
[5]   Quantum walks: a comprehensive review [J].
Elias Venegas-Andraca, Salvador .
QUANTUM INFORMATION PROCESSING, 2012, 11 (05) :1015-1106
[6]  
Godsil C., 2023, Discrete quantum walks on graphs and digraphs
[7]  
Higuchi Y, 2017, INTERDISCIP INF SCI, V23, P75, DOI 10.4036/iis.2017.a.10
[8]  
Kajiwara T, 2019, QUANTUM INF COMPUT, V19, P1081
[9]  
Konno N, 2008, LECT NOTES MATH, V1954, P309
[10]   On the relation between quantum walks and absolute zeta functions [J].
Konno, Norio .
QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2024, 11 (02) :147-157