A higher-order quadratic NLS equation on the half-line

被引:0
作者
Himonas, A. Alexandrou [1 ]
Yan, Fangchi [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
关键词
Higher-order nonlinear Schr & ouml; dinger equation; Quadratic nonlinearities; Initial-boundary value problem on the half-line; Fokas unified transform method; Well-posedness in Sobolev spaces; Linear and bilinear estimates in Bourgain spaces; BOUNDARY-VALUE-PROBLEM; NONLINEAR SCHRODINGER-EQUATION; DE-VRIES EQUATION; GLOBAL WELL-POSEDNESS; TRANSFORM METHOD; ILL-POSEDNESS; KDV; REGULARITY; SCATTERING;
D O I
10.1007/s00028-024-01034-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The well-posedness of the initial-boundary value problem for higher-order quadratic nonlinear Schr & ouml;dinger equations on the half-line is studied by utilizing the Fokas solution formula for the corresponding linear problem. Using this formula, linear estimates are derived in Bourgain spaces for initial data in spatial Sobolev spaces on the half-line and boundary data in temporal Sobolev spaces suggested by the time regularity of the linear initial value problem. Then, the needed bilinear estimates are derived and used for showing that the iteration map defined via the Fokas solution formula is a contraction in appropriate solution spaces. Finally, well-posedness is established for optimal Sobolev exponents in a way analogous to the case of the initial value problem on the whole line with solutions in classical Bourgain spaces.
引用
收藏
页数:67
相关论文
共 56 条
[1]   Fokas method for linear boundary value problems involving mixed spatial derivatives [J].
Batal, A. ;
Fokas, A. S. ;
Ozsari, T. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2239)
[2]   Interaction equations for short and long dispersive waves [J].
Bekiranov, D ;
Ogawa, T ;
Ponce, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 158 (02) :357-388
[3]   Nonhomogeneous boundary-value problems for one-dimensional nonlinear Schrodinger equations [J].
Bona, Jerry L. ;
Sun, Shu-Ming ;
Zhang, Bing-Yu .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 109 :1-66
[4]   A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain [J].
Bona, JL ;
Sun, SM ;
Zhang, BY .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (7-8) :1391-1436
[5]   A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane [J].
Bona, JL ;
Sun, SM ;
Zhang, BY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (02) :427-490
[6]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P107
[7]  
Cavalcante M, 2017, DIFFER INTEGRAL EQU, V30, P521
[8]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[9]  
Christ M, 2003, AM J MATH, V125, P1235
[10]   Sharp global well-posedness for KDV and modified KDV on R and T [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :705-749