Development of two machine learning models to predict conversion from primary HER2-0 breast cancer to HER2-low metastases: a proof-of-concept study

被引:0
作者
Miglietta, F. [1 ,2 ]
Collesei, A. [3 ]
Vernieri, C. [4 ,5 ]
Giarratano, T. [1 ]
Giorgi, C. A. [1 ]
Girardi, F. [1 ]
Griguolo, G. [1 ,2 ]
Cacciatore, M. [6 ]
Botticelli, A. [7 ]
Vingiani, A. [5 ,8 ]
Fotia, G. [4 ,5 ]
Piacentini, F. [9 ]
Massa, D. [1 ,2 ]
Marino, M. [1 ,2 ]
Pruneri, G. [4 ,8 ]
Fassan, M. [1 ,10 ,11 ]
Tos, A. P. Dei [11 ]
Dieci, M., V [1 ,2 ]
Guarneri, V. [1 ,2 ]
机构
[1] Ist Oncol Veneto IOV IRCCS, Oncol Unit 2, Padua, Italy
[2] Univ Padua, Dept Surg Oncol & Gastroenterol, Padua, Italy
[3] IOV IRCCS, Ist Oncol Veneto, Bioinformat Clin Res Unit, Padua, Italy
[4] Fdn IRCCS Ist Nazl Tumori INT, Med Oncol Dept, Milan, Italy
[5] Dept Univ Milan, Oncol & Hematooncol, Milan, Italy
[6] ULSS 9 Treviso Azienda ULSS 2 Marca Trevigiana Tum, Pathol Unit, Milan, Italy
[7] Sapienza Univ Rome, Dept Radiol Oncol & Pathol Sci, Policlin Umberto I, Rome, Italy
[8] Fdn IRCCS Ist Nazl Tumori, Dept Adv Diagnost, Milan, Italy
[9] Univ Hosp Modena, Dept Med & Surg Sci Children & Adults, Modena, Italy
[10] Ist Oncol Veneto Iov Irccs, Padua, Italy
[11] Azienda Univ Osped Padova, Pathol Unit, Padua, Italy
关键词
machine learning; explainability; breast cancer; HER2; DIAGNOSIS; IMPACT;
D O I
10.1016/j.esmoop.2024.104087
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: HER2-low expression has gained clinical relevance in breast cancer (BC) due to the availability of anti-HER2 antibodyedrug conjugates for patients with HER2-low metastatic BC. The well-reported instability of HER2-low status during disease evolution highlights the need to identify patients with HER2-0 primary BC who may develop a HER2-low phenotype at relapse. In response to the urgency of maximizing treatment access, we utilized artificial intelligence to predict this occurrence. Patients and methods: We included a large multicentric retrospective cohort of patients with BC who underwent tissue resampling at relapse. The dataset was preprocessed to address relevant issues such as missing data, feature abundance, and target class imbalance. We then trained two models: one focused on explainability [Extreme Gradient Boosting (XGBoost)] and another aimed at performance (an ensemble of XGBoost and support vector machine). Results: A total of 1200 patients were included in this study. Among 386 patients with HER2-0 primary BC and matched HER2 status at relapse, 42.5% (n = 157) converted to a HER2-low phenotype. The explainable model achieved a balanced accuracy of 58%, with a sensitivity of 53% and a specificity of 64%. The most important variables for this model were primary BC phenotype [mean Shapley value (SHAP) 0.540], primary BC histological type (SHAP 0.101), grade (SHAP 0.182), and sites of relapse (SHAP 0.008-0.213). The ensemble model had a balanced accuracy of 64%, with a sensitivity of 75% and a specificity of 53%. Conclusions: This work represents one of the first proof-of-concept applications of machine learning models to predict a highly relevant phenomenon for drug access in modern BC oncology. Starting with an explainable model and subsequently integrating it with an ensemble approach enabled us to enhance performance while maintaining transparency, explainability, and intelligibility.
引用
收藏
页数:9
相关论文
共 22 条
[1]  
Abdi H, 2007, ENCY MEASUREMENT STA, P651, DOI DOI 10.4135/9781412952644.NV-3
[2]   Discordance of HER2-Low between Primary Tumors and Matched Distant Metastases in Breast Cancer [J].
Almstedt, Katrin ;
Krauthauser, Lisa ;
Kappenberg, Franziska ;
Wagner, Daniel-Christoph ;
Heimes, Anne-Sophie ;
Battista, Marco J. J. ;
Anic, Katharina ;
Krajnak, Slavomir ;
Lebrecht, Antje ;
Schwab, Roxana ;
Brenner, Walburgis ;
Weikel, Wolfgang ;
Rahnenfuehrer, Joerg ;
Hengstler, Jan G. G. ;
Roth, Wilfried ;
Hasenburg, Annette ;
Stewen, Kathrin ;
Schmidt, Marcus .
CANCERS, 2023, 15 (05)
[3]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[4]  
Chen T, 2015, R package version 0.4-2 1(4), V04-2, P1
[5]   Trastuzumab deruxtecan (T-DXd) vs physician's choice of chemotherapy (TPC) in patients (pts) with hormone receptor-positive (HR plus ), human epidermal growth factor receptor 2 (HER2)-low or HER2-ultralow metastatic breast cancer (mBC) with prior endocrine therapy (ET): Primary results from DESTINY-Breast06 (DB-06) [J].
Curigliano, Giuseppe ;
Hu, Xichun ;
Dent, Rebecca Alexandra ;
Yonemori, Kan ;
Barrios Sr, Carlos H. ;
O'Shaughnessy, Joyce ;
Wildiers, Hans ;
Zhang, Qingyuan ;
Im, Seock-Ah ;
Saura, Cristina ;
Biganzoli, Laura ;
Sohn, Joohyuk ;
Levy, Christelle ;
Jacot, William ;
Begbie, Natasha ;
Ke, Jun ;
Patel, Gargi Surendra ;
Bardia, Aditya .
JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (17_SUPPL) :LBA1000-LBA1000
[6]   Discordance in receptor status between primary and recurrent breast cancer has a prognostic impact: a single-Institution analysis [J].
Dieci, M. V. ;
Barbieri, E. ;
Piacentini, F. ;
Ficarra, G. ;
Bettelli, S. ;
Dominici, M. ;
Conte, P. F. ;
Guarneri, V. .
ANNALS OF ONCOLOGY, 2013, 24 (01) :101-108
[7]   ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer [J].
Gennari, A. ;
Andre, F. ;
Barrios, C. H. ;
Cortes, J. ;
de Azambuja, E. ;
DeMichele, A. ;
Dent, R. ;
Fenlon, D. ;
Gligorov, J. ;
Hurvitz, S. A. ;
Im, S. -a. ;
Krug, D. ;
Kunz, W. G. ;
Loi, S. ;
Penault-Llorca, F. ;
Ricke, J. ;
Robson, M. ;
Rugo, H. S. ;
Saura, C. ;
Schmid, P. ;
Singer, C. F. ;
Spanic, T. ;
Tolaney, S. M. ;
Turner, N. C. ;
Curigliano, G. ;
Loibl, S. ;
Paluch-Shimon, S. ;
Harbeck, N. .
ANNALS OF ONCOLOGY, 2021, 32 (12) :1475-1495
[8]   Phenotypic discordance between primary and metastatic breast cancer in the large-scale real-life multicenter French ESME cohort [J].
Grinda, Thomas ;
Joyon, Natacha ;
Lusque, Amelie ;
Lefevre, Sarah ;
Arnould, Laurent ;
Penault-Llorca, Frederique ;
Macgrogan, Gaetan ;
Treilleux, Isabelle ;
Vincent-Salomon, Anne ;
Haudebourg, Juliette ;
Maran-Gonzalez, Aurelie ;
Charafe-Jauffret, Emmanuelle ;
Courtinard, Coralie ;
Franchet, Camille ;
Verriele, Veronique ;
Brain, Etienne ;
Tas, Patrick ;
Blanc-Fournier, Cecile ;
Leroux, Agnes ;
Loussouarn, Delphine ;
Berghian, Anca ;
Brabencova, Eva ;
Ghnassia, Jean Pierre ;
Scoazec, Jean-Yves ;
Delaloge, Suzette ;
Filleron, Thomas ;
Lacroix-Triki, Magali .
NPJ BREAST CANCER, 2021, 7 (01)
[9]   Comparison of HER-2 and hormone receptor expression in primary breast cancers and asynchronous paired metastases: Impact on patient management [J].
Guarneri, Valentina ;
Giovannelli, Simona ;
Ficarra, Guido ;
Bettelli, Stefania ;
Maiorana, Antonino ;
Piacentini, Federico ;
Barbieri, Elena ;
Dieci, Maria Vittoria ;
D'Amico, Roberto ;
Jovic, Gordana ;
Conte, PierFranco .
ONCOLOGIST, 2008, 13 (08) :838-844
[10]   The problem of overfitting [J].
Hawkins, DM .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (01) :1-12