MultiThal-classifier, a machine learning-based multi-class model for thalassemia diagnosis and classification

被引:0
|
作者
Wang, Wenqiang [1 ]
Ye, Renqing [1 ]
Tang, Baojia [1 ]
Qi, Yuying [1 ]
机构
[1] Ningde Normal Univ, Dept Clin Lab, Ningde Municipal Hosp, 13 Mindong Rd East,Dongqiao Econ & Technol Dev Zon, Ningde 352100, Fujian, Peoples R China
关键词
Thalassemia; Iron Deficiency Anemia; Machine Learning; Multi-Class Model; Hematological Parameters; IRON-DEFICIENCY;
D O I
10.1016/j.cca.2024.120025
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Background: The differential diagnosis between iron deficiency anemia (IDA) and thalassemia trait (TT) remains a significant clinical challenge. This study aimed to develop a machine learning-based multi-class model to differentiate among Microcytic-TT(TT with low mean corpuscular volume), Normocytic-TT (TT with normal mean corpuscular volume), IDA, and healthy individuals. Methods: A comprehensive dataset comprising 1,819 individuals was analyzed using six distinct machine learning algorithms. The eXtreme Gradient Boosting (XGBoost) algorithm was ultimately selected to construct the MultiThal-Classifier (M-THAL) model. SMOTENC (Synthetic Minority Over-sampling Technique for Nominal and Continuous features) was employed to address data imbalance. Model performance was evaluated using various metrics, and SHAP values were applied to interpret the model's predictions.Additionally, external validation was conducted to assess the model's robustness and generalizability. Results: After performing 1000 bootstrap resamples of the test set, the average performance metrics of M-THAL and the 95 % confidence interval(CI) were as follows, sensitivity 90.27 % (95 % CI: 84.88-95.26), specificity 97.87 % (95% CI: 97.10-98.55), PPV 93.42 % (95 % CI: 89.34-96.48), NPV 97.82% (95 % CI: 97.00-98.53), F1score 91.50 % (95% CI: 87.29-95.34), Youden's index 88.15 % (95 % CI: 82.33-93.70), accuracy 97.06 % (95% CI: 96.06-97.99), and AUC 94.07 % (95 % CI: 91.17-96.84).Feature importance analysis identified mean corpuscular volume(MCV), mean corpuscular hemoglobin(MCH), red cell distribution width - standard deviation(RDW-SD), and hemoglobin (HGB) were identified as the most important features. External validation confirmed the model's robustness and generalizability. Conclusion: The M-THAL effectively distinguishes Normocytic-TT, Microcytic-TT, IDA, and healthy individuals using hematological parameters, offers a rapid and cost-effective screening tool that can be readily implemented in diverse healthcare settings.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine Learning-Based Framework for Multi-Class Diagnosis of Neurodegenerative Diseases: A Study on Parkinson's Disease
    Singh, Gurpreet
    Vadera, Meet
    Samavedham, Lakshminarayanan
    Lim, Erle Chuen-Hian
    IFAC PAPERSONLINE, 2016, 49 (07): : 990 - 995
  • [2] ECG Multi-Class Classification using Neural Network as Machine Learning Model
    Lassoued, Hela
    Ketata, Raouf
    2018 INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND ELECTRICAL TECHNOLOGIES (IC_ASET), 2017, : 473 - 478
  • [3] Extreme Learning Machine for Multi-class Sentiment Classification of Tweets
    Wang, Zhaoxia
    Parth, Yogesh
    PROCEEDINGS OF ELM-2015, VOL 1: THEORY, ALGORITHMS AND APPLICATIONS (I), 2016, 6 : 1 - 11
  • [4] Machine Learning-based Multi-Class Traffic Management for Smart Grid Communication Network
    Jiang, Weiwei
    Han, Haoyu
    He, Miao
    Gu, Weixi
    ADJUNCT PROCEEDINGS OF THE 2023 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING & THE 2023 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTING, UBICOMP/ISWC 2023 ADJUNCT, 2023, : 694 - 699
  • [5] A Lightweight Obfuscated Malware Multi-class Classifier for IoT Using Machine Learning
    Cassel, William
    Majd, Nahid Ebrahimi
    2024 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2024, : 239 - 243
  • [6] Multi-class Classification of Industrial Fall from Height based on Machine Learning Algorithm
    Koo, Bum Mo
    Kim, Jong Man
    Nam, Ye Jin
    Sung, Dong Jin
    Shim, Jae Woo
    Yang, Su Min
    Kim, Young Ho
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2022, 46 (03) : 259 - 265
  • [7] A Multi-class Classification Approach for Weather Forecasting with Machine Learning Techniques
    Dritsas, Elias
    Trigka, Maria
    Mylonas, Phivos
    2022 17TH INTERNATIONAL WORKSHOP ON SEMANTIC AND SOCIAL MEDIA ADAPTATION & PERSONALIZATION (SMAP 2022), 2022, : 81 - 85
  • [8] Multi-class Weather Classification: Comparative Analysis of Machine Learning Algorithms
    Mishra, Amartya
    Roy, Ganpati Kumar
    Singla, Kanika
    ADVANCES IN DATA AND INFORMATION SCIENCES, 2022, 318 : 307 - 316
  • [9] GEML: A Grammatical Evolution, Machine Learning Approach to Multi-class Classification
    Fitzgerald, Jeannie M.
    Azad, R. Muhammad Atif
    Ryan, Conor
    COMPUTATIONAL INTELLIGENCE, IJCCI 2015, 2017, 669 : 113 - 134
  • [10] Multi-class classification algorithm based on Support Vector Machine
    Yang Kuihe
    Yuan Min
    7TH INTERNATIONAL CONFERENCE ON MEASUREMENT AND CONTROL OF GRANULAR MATERIALS, PROCEEDINGS, 2006, : 322 - 325