Accurate experimental band gap predictions with multi- fidelity correction learning

被引:5
作者
De Breuck, Pierre-Paul [1 ]
Heymans, Gregoire [1 ]
Rignanese, Gian-Marco [1 ,2 ]
机构
[1] UCLouvain, Inst Condensed Matter & Nanosci IMCN, Chemin Etoiles 8, B-1348 Louvain La Neuve, Belgium
[2] Northwestern Polytech Univ, Sch Mat Sci & Engn, Xian 710072, Shaanxi, Peoples R China
来源
JOURNAL OF MATERIALS INFORMATICS | 2022年 / 2卷 / 03期
关键词
Machine learning; electronic band gap; multi-delity; transfer-learning; materials properties;
D O I
10.20517/jmi.2022.13
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To improve the precision of machine-learning predictions, we investigate various techniques that combine multiple quality sources for the same property. In particular, focusing on the electronic band gap, we aim at having the lowest error by taking advantage of all available experimental measurements and density-functional theory calculations. We show that learning about the difference between high- and low-quality values, considered a correction, significantly improves the results compared to learning on the sole high-quality experimental data. As a preliminary step, we also introduce an extension of the MODNet model, which consists of using a genetic algorithm for hyperparameter optimization. Thanks to this, MODNet is shown to achieve excellent performance on the Matbench test suite.
引用
收藏
页数:11
相关论文
共 36 条
[1]   The 2019 materials by design roadmap [J].
Alberi, Kirstin ;
Nardelli, Marco Buongiorno ;
Zakutayev, Andriy ;
Mitas, Lubos ;
Curtarolo, Stefano ;
Jain, Anubhav ;
Fornari, Marco ;
Marzari, Nicola ;
Takeuchi, Ichiro ;
Green, Martin L. ;
Kanatzidis, Mercouri ;
Toney, Mike F. ;
Butenko, Sergiy ;
Meredig, Bryce ;
Lany, Stephan ;
Kattner, Ursula ;
Davydov, Albert ;
Toberer, Eric S. ;
Stevanovic, Vladan ;
Walsh, Aron ;
Park, Nam-Gyu ;
Aspuru-Guzik, Alan ;
Tabor, Daniel P. ;
Nelson, Jenny ;
Murphy, James ;
Setlur, Anant ;
Gregoire, John ;
Li, Hong ;
Xiao, Ruijuan ;
Ludwig, Alfred ;
Martin, Lane W. ;
Rappe, Andrew M. ;
Wei, Su-Huai ;
Perkins, John .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (01)
[2]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[3]   AtomSets as a hierarchical transfer learning framework for small and large materials datasets [J].
Chen, Chi ;
Ong, Shyue Ping .
NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
[4]   Learning properties of ordered and disordered materials from multi-fidelity data [J].
Chen, Chi ;
Zuo, Yunxing ;
Ye, Weike ;
Li, Xiangguo ;
Ong, Shyue Ping .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (01) :46-+
[5]   Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals [J].
Chen, Chi ;
Ye, Weike ;
Zuo, Yunxing ;
Zheng, Chen ;
Ong, Shyue Ping .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3564-3572
[6]   Recent advances and applications of deep learning methods in materials science [J].
Choudhary, Kamal ;
DeCost, Brian ;
Chen, Chi ;
Jain, Anubhav ;
Tavazza, Francesca ;
Cohn, Ryan ;
Park, Cheol Woo ;
Choudhary, Alok ;
Agrawal, Ankit ;
Billinge, Simon J. L. ;
Holm, Elizabeth ;
Ong, Shyue Ping ;
Wolverton, Chris .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[7]   Atomistic Line Graph Neural Network for improved materials property predictions [J].
Choudhary, Kamal ;
DeCost, Brian .
NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
[8]   Screening billions of candidates for solid lithium-ion conductors: A transfer learning approach for small data [J].
Cubuk, Ekin D. ;
Sendek, Austin D. ;
Reed, Evan J. .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (21)
[9]   Robust model benchmarking and bias-imbalance in data-driven materials science: a case study on MODNet [J].
De Breuck, Pierre-Paul ;
Evans, Matthew L. ;
Rignanese, Gian-Marco .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (40)
[10]   Materials property prediction for limited datasets enabled by feature selection and joint learning with MODNet [J].
De Breuck, Pierre-Paul ;
Hautier, Geoffroy ;
Rignanese, Gian-Marco .
NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)