Performance comparison of the Shack-Hartmann and pyramid wavefront sensors with a laser guide star for 40 m telescopes

被引:1
作者
Oyarzun, F. [1 ]
Heritier, C. [1 ,3 ]
Chambouleyron, V. [2 ]
Fusco, T. [1 ,3 ]
Rouquette, P. [1 ]
Neichel, B. [1 ]
机构
[1] Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
[2] Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA USA
[3] Univ Paris Saclay, DOTA, ONERA, F-91123 Palaiseau, France
关键词
instrumentation: adaptive optics; methods: numerical; ADAPTIVE OPTICS; COMPENSATION;
D O I
10.1051/0004-6361/202451670
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Upcoming giant segmented mirror telescopes will use laser guide stars (LGS) for their adaptive optics (AO) systems. Two options of wavefront sensors (WFSs) are the Shack-Hartmann wavefront sensor (SHWFS) and the pyramid wavefront sensor (PWFS). Aims. In this paper, we compare the noise performance of the PWFS and the SHWFS. We aim to identify which of the two is best to use in the context of a single or tomographic configuration. Methods. To compute the noise performance, we extended a noise model developed for the PWFS to be used with the SHWFS. To do this, we expressed the centroiding algorithm of the SHWFS as a matrix-vector multiplication, which allowed us to use the statistics of noise to compute its propagation through the AO loop. We validated the noise model with end-to-end simulations for telescopes of 8 and 16 m in diameter. Results. For an AO system with only one WFS, we found that given the same number of subapertures, the PWFS outperforms the SHWFS. For a 40 m telescope, the limiting magnitude of the PWFS is around one magnitude higher than the SHWFS. When using multiple WFS and a generalized least-squares estimator to combine the signal, our model predicts that in a tomographic system, the SHWFS performs better than the PWFS (with a limiting magnitude that is higher by a 0.3 magnitude. When using sub-electron RON detectors for the PWFS, the performance quality is almost identical for the two WFSs. Conclusions. We find that when using a single WFS with LGS, PWFS is a better alternative than the SH. For a tomographic system, both sensors would give roughly the same performance.
引用
收藏
页数:13
相关论文
共 30 条
[1]  
Bechet C., 2012, SPIE C SER, V8447
[2]   Modeling noise propagation in Fourier-filtering wavefront sensing, fundamental limits, and quantitative comparison [J].
Chambouleyron, V. ;
Fauvarque, O. ;
Plantet, C. ;
Sauvage, J. -f. ;
Levraud, N. ;
Cisse, M. ;
Neichel, B. ;
Fusco, T. .
ASTRONOMY & ASTROPHYSICS, 2023, 670
[3]   Focal-plane-assisted pyramid wavefront sensor: Enabling frame-by-frame optical gain tracking [J].
Chambouleyron, V. ;
Fauvarque, O. ;
Sauvage, J. -F. ;
Neichel, B. ;
Fusco, T. .
ASTRONOMY & ASTROPHYSICS, 2021, 649
[4]   Pyramid wavefront sensor optical gains compensation using a convolutional model [J].
Chambouleyron, V ;
Fauvarque, O. ;
Janin-Potiron, P. ;
Correia, C. ;
Sauvage, J-F ;
Schwartz, N. ;
Neichel, B. ;
Fusco, T. .
ASTRONOMY & ASTROPHYSICS, 2020, 644
[5]  
Ciliegi P., 2022, SPIE Conf. Ser, V12185, P1218514
[6]  
Conan R., 2014, SPIE Conf. Ser, V9148, p91486C
[7]  
Davies R., 2016, SPIE Conf. Ser, V9908, p99081Z
[8]  
Deo V., 2018, SPIE C SER, V10703
[9]   Kernel formalism applied to Fourier-based wave-front sensing in presence of residual phases [J].
Fauvaroue, Olivier ;
Janin-Potiron, Pierre ;
Correia, Carlos ;
Brule, Yoann ;
Neichel, Benoit ;
Chambouleyron, Vincent ;
Sauvage, Jean-Francois ;
Fusco, Thierry .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (07) :1241-1251
[10]  
FOY R, 1985, ASTRON ASTROPHYS, V152, pL29