Well-posedness for the 3-D generalized micropolar system in critical Fourier-Besov-Morrey spaces

被引:0
作者
Gao, Peng [1 ]
Yuan, Baoquan [1 ]
Zhai, Tiantian [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan, Peoples R China
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2025年
关键词
Generalized micropolar system; global well-posedness; Fourier-Besov-Morrey space; NAVIER-STOKES; FLUID SYSTEM; EQUATIONS;
D O I
10.4153/S0008439525000207
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we focus on the Cauchy problem of the three-dimensional generalized incompressible micropolar system in critical Fourier-Besov-Morrey spaces. By using the Fourier localization argument and the Littlewood-Paley theory, we get the local well-posedness results and global well-posedness results with small initial data belonging to the critical Fourier-Besov-Morrey spaces.
引用
收藏
页数:17
相关论文
共 21 条
[1]  
Baraka A. E., 2019, Open J. Math. Anal, V3, P70
[2]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[3]   Global well-posedness for the micropolar fluid system in critical Besov spaces [J].
Chen, Qionglei ;
Miao, Changxing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2698-2724
[4]  
El Baraka A., 2017, Moroccan J. Pure Appl. Anal, V3, P1
[5]  
EL Baraka A, 2017, ELECTRON J DIFFER EQ
[6]  
ERINGEN AC, 1966, J MATH MECH, V16, P1
[7]   Micropolar fluid system in a space of distributions and large time behavior [J].
Ferreira, L. C. F. ;
Villamizar-Roa, E. J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) :1425-1445
[8]   Self-similar solutions for active scalar equations in Fourier-Besov-Morrey spaces [J].
Ferreira, Lucas C. F. ;
Lima, Lidiane S. M. .
MONATSHEFTE FUR MATHEMATIK, 2014, 175 (04) :491-509
[9]   NOTE ON EXISTENCE AND UNIQUENESS OF SOLUTIONS OF MICROPOLAR FLUID EQUATIONS [J].
GALDI, GP ;
RIONERO, S .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1977, 15 (02) :105-108