Nonparametric regression with predictors missing at random and the scale depending on auxiliary covariates

被引:0
作者
Jiang, Tian [1 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, 800 W Campbell Rd, Richardson, TX 75080 USA
关键词
Adaptation; Heteroscedasticity; Missing at random; Minimax;
D O I
10.1016/j.jspi.2025.106278
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonparametric regression with missing at random (MAR) predictors, univariate regression component of interest, and the scale function depending on both the predictor and auxiliary covariates, is considered. The asymptotic theory suggests that both heteroscedasticity and MAR mechanism affect the sharp constant of the minimax mean integrated squared error (MISE) convergence. We propose a data-driven procedure adaptive to the missing mechanism and unknown smoothness of the estimated regression function. The estimator preserves the optimal convergence rate and can achieve sharp minimaxity when predictors are missing completely at random (MCAR).
引用
收藏
页数:16
相关论文
共 50 条
[21]   NONPARAMETRIC REGRESSION ESTIMATION WITH MISSING DATA [J].
CHU, CK ;
CHENG, PE .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 48 (01) :85-99
[22]   Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods [J].
Lee, Shen-Ming ;
Lukusa, T. Martin ;
Li, Chin-Shang .
COMPUTATIONAL STATISTICS, 2020, 35 (02) :725-754
[23]   A general semiparametric maximum likelihood method for Cox regression models with nonmonotone missing at random covariates [J].
Zhao, Yang .
COMPUTATIONAL STATISTICS, 2025,
[24]   Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods [J].
Shen-Ming Lee ;
T. Martin Lukusa ;
Chin-Shang Li .
Computational Statistics, 2020, 35 :725-754
[25]   The competing risks Cox model with auxiliary case covariates under weaker missing-at-random cause of failure [J].
Daniel Nevo ;
Reiko Nishihara ;
Shuji Ogino ;
Molin Wang .
Lifetime Data Analysis, 2018, 24 :425-442
[26]   The competing risks Cox model with auxiliary case covariates under weaker missing-at-random cause of failure [J].
Nevo, Daniel ;
Nishihara, Reiko ;
Ogino, Shuji ;
Wang, Molin .
LIFETIME DATA ANALYSIS, 2018, 24 (03) :425-442
[27]   Inference using conditional logistic regression with missing covariates [J].
Lipsitz, SR ;
Parzen, M ;
Ewell, M .
BIOMETRICS, 1998, 54 (01) :295-303
[28]   Conditional and unconditional categorical regression models with missing covariates [J].
Satten, GA ;
Carroll, RJ .
BIOMETRICS, 2000, 56 (02) :384-388
[29]   Semiparametric Maximum Likelihood for Missing Covariates in Parametric Regression [J].
Zhiwei Zhang ;
Howard E. Rockette .
Annals of the Institute of Statistical Mathematics, 2006, 58 :687-706
[30]   Bias correction in logistic regression with missing categorical covariates [J].
Das, Ujjwal ;
Maiti, Tapabrata ;
Pradhan, Vivek .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (09) :2478-2485