Biofuser: a multi-source data fusion platform for fusing the data of fermentation process devices

被引:0
|
作者
Zhang, Dequan [1 ]
Jiang, Wei [2 ]
Lou, Jincheng [2 ]
Han, Xuanzhou [2 ]
Xia, Jianye [1 ,2 ]
机构
[1] East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai, Peoples R China
[2] Chinese Acad Sci, Tianjin Inst Ind Biotechnol, Engn Biol Biomfg, Tianjin, Peoples R China
来源
FRONTIERS IN DIGITAL HEALTH | 2024年 / 6卷
基金
国家重点研发计划;
关键词
bioprocess optimization; multi-source heterogeneous data; multi-source data fusion; Biofuser; intelligent biomanufacturing;
D O I
10.3389/fdgth.2024.1390622
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
In the past decade, the progress of traditional bioprocess optimization technique has lagged far behind the rapid development of synthetic biology, which has hindered the industrialization process of synthetic biology achievements. Recently, more and more advanced equipment and sensors have been applied for bioprocess online inspection to improve the understanding and optimization efficiency of the process. This has resulted in large amounts of process data from various sources with different communication protocols and data formats, requiring the development of techniques for integration and fusion of these heterogeneous data. Here we describe a multi-source fusion platform (Biofuser) that is designed to collect and process multi-source heterogeneous data. Biofuser integrates various data to a unique format that facilitates data visualization, further analysis, model construction, and automatic process control. Moreover, Biofuser also provides additional APIs that support machine learning or deep learning using the integrated data. We illustrate the application of Biofuser with a case study on riboflavin fermentation process development, demonstrating its ability in device faulty identification, critical process factor identification, and bioprocess prediction. Biofuser has the potential to significantly enhance the development of fermentation optimization techniques and is expected to become an important infrastructure for artificial intelligent integration into bioprocess optimization, thereby promoting the development of intelligent biomanufacturing.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Multi-source data fusion for economic data analysis
    Li, Menggang
    Wang, Fang
    Jia, Xiaojun
    Li, Wenrui
    Li, Ting
    Rui, Guangwei
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10): : 4729 - 4739
  • [2] Multi-source data fusion for economic data analysis
    Menggang Li
    Fang Wang
    Xiaojun Jia
    Wenrui Li
    Ting Li
    Guangwei Rui
    Neural Computing and Applications, 2021, 33 : 4729 - 4739
  • [3] Deep well construction of big data platform based on multi-source heterogeneous data fusion
    Zhang Y.
    Wang Y.
    Ding H.
    Li Y.
    Bai Y.
    International Journal of Internet Manufacturing and Services, 2019, 6 (04) : 371 - 388
  • [4] Scalable Recommendation Models Fusing Multi-Source Heterogeneous Data
    Ji Z.-Y.
    Wu M.-D.
    Yang C.
    Li J.-D.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2021, 44 (03): : 106 - 111
  • [5] BRScS: a hybrid recommendation model fusing multi-source heterogeneous data
    Ji, Zhenyan
    Yang, Chun
    Wang, Huihui
    Enrique Armendariz-inigo, Jose
    Arce-Urriza, Marta
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2020, 2020 (01)
  • [6] Voltage sag interactive platform of provincial power grid based on multi-source data fusion
    Zhang Y.
    Huang J.
    Lin H.
    Chen J.
    Liu S.
    Luo J.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2023, 43 (03): : 196 - 203
  • [7] A new global TEC empirical model based on fusing multi-source data
    Jiandi Feng
    Ting Zhang
    Wang Li
    Zhenzhen Zhao
    Baomin Han
    Kaixin Wang
    GPS Solutions, 2023, 27
  • [8] BRS cS: a hybrid recommendation model fusing multi-source heterogeneous data
    Zhenyan Ji
    Chun Yang
    Huihui Wang
    José Enrique Armendáriz-iñigo
    Marta Arce-Urriza
    EURASIP Journal on Wireless Communications and Networking, 2020
  • [9] Recommended Model for Fusing Multi-Source Heterogeneous Data Based on Deep Learning
    Ji Z.-Y.
    Song X.-J.
    Pi H.-Y.
    Yang C.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2019, 42 (06): : 35 - 42
  • [10] ECOSYSTEM MAPPING IN MOUNTAINOUS AREAS BY FUSING MULTI-SOURCE DATA AND THE RELATED KNOWLEDGE
    Lei, Guangbin
    Li, Ainong
    Tan, Jianbo
    Bian, Jinhu
    Zhao, Wei
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1344 - 1347