Evolution of expected values in open quantum systems

被引:0
作者
Vallejo, Andres [1 ]
Romanelli, Alejandro [1 ]
Feldman, Virginia [1 ]
Donangelo, Raul [1 ]
机构
[1] Univ Republica, Fac Ingn, Montevideo 11300, Uruguay
关键词
VON-NEUMANN; DYNAMICS; MODEL; HEAT;
D O I
10.1103/PhysRevA.111.032201
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive a generalization of the Ehrenfest theorem valid for open quantum systems. From this result, we identify three contributions to the evolution of expected values: (i) the explicit time dependence of the observable, (ii) the incompatibility between the observable and an operator which plays the role of an effective Hamiltonian, and (iii) entropy changes. Considering the local Hamiltonian as the observable, and adopting a specific interpretation of the nature of thermal interactions, we obtain an alternative version of the first law of thermodynamics. Within this framework, we show that in some cases the power performed by the system can be considered as a quantum observable. As an application, the pure-dephasing process is reinterpreted from this perspective.
引用
收藏
页数:5
相关论文
共 21 条
  • [11] Model discrimination for dephasing two-level systems
    Gong, Er-ling
    Zhou, Weiwei
    Schirmer, Sophie
    [J]. PHYSICS LETTERS A, 2015, 379 (04) : 272 - 278
  • [12] Hall B C., 2013, Quantum theory for mathematicians, DOI 10.1007/978-1-4614-7116-5
  • [13] Von Neumann's entropy does not correspond to thermodynamic entropy
    Hemmo, Meir
    Shenker, Orly
    [J]. PHILOSOPHY OF SCIENCE, 2006, 73 (02) : 153 - 174
  • [14] A simple and efficient evolution operator for time-dependent Hamiltonians: the Taylor expansion
    Lauvergnat, David
    Blasco, Sophie
    Chapuisat, Xavier
    Nauts, Andre
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (20)
  • [15] Mandelstam L., 1945, Selected Papers, V9, P249, DOI [10.1007/978-3-642-74626-08, DOI 10.1007/978-3-642-74626-08]
  • [16] Messiah A., 1962, Quantum Mechanics, DOI DOI 10.1103/PhysRevLett.101.220405
  • [17] Nielsen M. A., 2010, Quantum Computation and Quantum Information
  • [18] Preskill J., 1998, Lecture Notes for Physics, V229
  • [19] On the Equivalence of von Neumann and Thermodynamic Entropy
    Prunkl, Carina E. A.
    [J]. PHILOSOPHY OF SCIENCE, 2020, 87 (02) : 262 - 280
  • [20] SYNGE JL, 1972, P ROY IRISH ACAD A, V72, P121