Biomass-Derived Phosphorus-Doped Porous Hard Carbon Anode for Stable and High-Rate Sodium Ion Batteries

被引:1
作者
Liang, Puwu [1 ,2 ,3 ]
Huo, Zijing [1 ,2 ,3 ]
Liu, Yangjie [2 ,3 ]
Bo, Zheng [4 ]
Wu, Yongmin [5 ]
Hu, Xiang [2 ,3 ]
Wen, Zhenhai [2 ,3 ]
机构
[1] Fuzhou Univ, Coll Chem, Fuzhou 350002, Peoples R China
[2] Chinese Acad Sci, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fujian Prov Key Lab Mat & Tech Hydrogen Energy, Fuzhou 350002, Fujian, Peoples R China
[4] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou, Peoples R China
[5] Shanghai Inst Space Power Sources, State Key Lab Space Power Sources Technol, 2965 Dongchuan Rd, Shanghai, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 中国博士后科学基金;
关键词
Sodium-ion battery; Anode; Hard carbon; biomass; Phosphorus-doped; CLOSED-PORE FORMATION; LITHIUM-ION; STORAGE; CAPACITY;
D O I
10.1002/batt.202400694
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Biomass-derived hard carbon, despite being promising for anode material of sodium-ion batteries, usually suffer from low initial coulombic efficiency (ICE), poor rate capacity, and limited cycling stability caused by complex surface defects and low intrinsic conductivity. Herein, phosphorus-doped porous hard carbon (HC@PC-P) were synthesized by the thermal polymerization of soy lecithin on the surfaces of hard carbon derived from olive kernels. The incorporation of heteroatom phosphorus in the porous hard carbon framework expands the carbon lattice spacing, optimizes the graphitization degree, and increases electrical conductivity, guaranteeing ensuring rapid electron and ion transfer. These coupling effects enable HC@PC-P anode to achieve a high reversible capacity of 350 mAh g-1 at 0.1 A g-1, an impressive initial coulombic efficiency of 89.6 %, and remarkable long-term cycling stability at 1 A g-1 over 1000 cycles with negligible capacity fade. The mechanisms behind sodium storage and enhanced electrochemical performance were elucidated by ex-situ Raman spectroscopy and kinetic analysis. Additionally, the assembled HC@PC-P//Na3V2(PO4)3 full cell demonstrated a high energy density of 257.9 Wh kg-1. This work provides a rational guide for designing advanced hard carbon anode materials for high-energy sodium-ion batteries.
引用
收藏
页数:10
相关论文
共 70 条
[1]   Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges [J].
Al-Shetwi, Ali Q. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 822
[2]   Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research [J].
Alvira, Dario ;
Antoran, Daniel ;
Manya, J. Joan .
CHEMICAL ENGINEERING JOURNAL, 2022, 447
[3]   A revised mechanistic model for sodium insertion in hard carbons [J].
Au, Heather ;
Alptekin, Hande ;
Jensen, Anders C. S. ;
Olsson, Emilia ;
O'Keefe, Christopher A. ;
Smith, Thomas ;
Crespo-Ribadeneyra, Maria ;
Headen, Thomas F. ;
Grey, Clare P. ;
Cai, Qiong ;
Drew, Alan J. ;
Titirici, Maria-Magdalena .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3469-3479
[4]  
Cao K. Z., 2024, J XINYANG NORMAL U N, V37, P154
[5]   Tuning morphology, defects and functional group types in hard carbon via phosphorus doped for rapid sodium storage [J].
Chen, Chen ;
Huang, Ying ;
Lu, Mengwei ;
Zhang, Jiaxin ;
Li, Tiehu .
CARBON, 2021, 183 :415-427
[6]   Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization [J].
Chen, Dequan ;
Zhang, Wen ;
Luo, Kangying ;
Song, Yang ;
Zhong, Yanjun ;
Liu, Yuxia ;
Wang, Gongke ;
Zhong, Benhe ;
Wu, Zhenguo ;
Guo, Xiaodong .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) :2244-2262
[7]   A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards [J].
Chen, Yuqing ;
Kang, Yuqiong ;
Zhao, Yun ;
Wang, Li ;
Liu, Jilei ;
Li, Yanxi ;
Liang, Zheng ;
He, Xiangming ;
Li, Xing ;
Tavajohi, Naser ;
Li, Baohua .
JOURNAL OF ENERGY CHEMISTRY, 2021, 59 :83-99
[8]   Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes [J].
Ding, Jia ;
Wang, Huanlei ;
Li, Zhi ;
Kohandehghan, Alireza ;
Cui, Kai ;
Xu, Zhanwei ;
Zahiri, Beniamin ;
Tan, Xuehai ;
Lotfabad, Elmira Memarzadeh ;
Olsen, Brian C. ;
Mitlin, David .
ACS NANO, 2013, 7 (12) :11004-11015
[9]   Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials [J].
Feng, Xin ;
Bai, Ying ;
Liu, Mingquan ;
Li, Ying ;
Yang, Haoyi ;
Wang, Xinran ;
Wu, Chuan .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) :2036-2089
[10]   Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries [J].
Feng, Yiming ;
Tao, Lei ;
He, Yanhonog ;
Jin, Qing ;
Kuai, Chunguang ;
Zheng, Yunwu ;
Li, Mengqiao ;
Hou, Qingping ;
Zheng, Zhifeng ;
Lin, Feng ;
Huang, Haibo .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (47) :26954-26965