Multi-Agent Deep Reinforcement Learning for Multi-Echelon Inventory Management

被引:0
|
作者
Liu, Xiaotian [1 ]
Hu, Ming [2 ]
Peng, Yijie [3 ]
Yang, Yaodong [4 ]
机构
[1] Peking Univ, Guanghua Sch Management, Beijing, Peoples R China
[2] Univ Toronto, Rotman Sch Management, Toronto, ON M5S 3E6, Canada
[3] Peking Univ, PKU Wuhan Inst Artificial Intelligence, Guanghua Sch Management, Xiangjiang Lab, Beijing, Peoples R China
[4] Peking Univ, Inst Artificial Intelligence, PKU Wuhan Inst Artificial Intelligence, Beijing, Peoples R China
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Multi-Echelon Inventory Management; Multi-Agent Reinforcement Learning; Bullwhip Effect; OPTIMAL POLICIES; OPTIMALITY;
D O I
10.1177/10591478241305863
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We apply heterogeneous-agent proximal policy optimization (HAPPO), a multi-agent deep reinforcement learning (MADRL) algorithm, to the decentralized multi-echelon inventory management problems in both a serial supply chain and a supply chain network. We also examine whether the upfront-only information-sharing mechanism used in MADRL helps alleviate the bullwhip effect. Our results show that policies constructed by HAPPO achieve lower overall costs than policies constructed by single-agent deep reinforcement learning and other heuristic policies. Also, the application of HAPPO results in a less significant bullwhip effect than policies constructed by single-agent deep reinforcement learning where information is not shared among actors. Somewhat surprisingly, compared to using the overall costs of the system as a minimization target for each actor, HAPPO achieves lower overall costs when the minimization target for each actor is a combination of its own costs and the overall costs of the system. Our results provide a new perspective on the benefit of information sharing inside the supply chain that helps alleviate the bullwhip effect and improve the overall performance of the system. Upfront information sharing and action coordination in model training among actors is essential, with the former even more essential, for improving a supply chain's overall performance when applying MADRL. Neither actors being fully self-interested nor actors being fully system-focused leads to the best practical performance of policies learned and constructed by MADRL. Our results also verify MADRL's potential in solving various multi-echelon inventory management problems with complex supply chain structures and in non-stationary market environments.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Learning multi-agent communication with double attentional deep reinforcement learning
    Mao, Hangyu
    Zhang, Zhengchao
    Xiao, Zhen
    Gong, Zhibo
    Ni, Yan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2020, 34 (01)
  • [22] A Strategic Framework for Multi-Echelon Inventory System Selection
    Sbai, Noucaiba
    Berrado, Abdelaziz
    2019 INTERNATIONAL COLLOQUIUM ON LOGISTICS AND SUPPLY CHAIN MANAGEMENT (LOGISTIQUA), 2019,
  • [23] Multi-Objective Dynamic Path Planning with Multi-Agent Deep Reinforcement Learning
    Tao, Mengxue
    Li, Qiang
    Yu, Junxi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (01)
  • [24] A Supply Chain Inventory Management Method for Civil Aircraft Manufacturing Based on Multi-Agent Reinforcement Learning
    Piao, Mingjie
    Zhang, Dongdong
    Lu, Hu
    Li, Rupeng
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [25] PIC: Permutation Invariant Critic for Multi-Agent Deep Reinforcement Learning
    Liu, Iou-Jen
    Yeh, Raymond A.
    Schwing, Alexander G.
    CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100
  • [26] CMIX: Deep Multi-agent Reinforcement Learning with Peak and Average Constraints
    Liu, Chenyi
    Geng, Nan
    Aggarwal, Vaneet
    Lan, Tian
    Yang, Yuan
    Xu, Mingwei
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, 2021, 12975 : 157 - 173
  • [27] Assured Deep Multi-Agent Reinforcement Learning for Safe Robotic Systems
    Riley, Joshua
    Calinescu, Radu
    Paterson, Colin
    Kudenko, Daniel
    Banks, Alec
    AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2021, 2022, 13251 : 158 - 180
  • [28] Scaling Collaborative Space Networks with Deep Multi-Agent Reinforcement Learning
    Ma, Ricky
    Hernandez, Gabe
    Hernandez, Carrie
    2023 IEEE COGNITIVE COMMUNICATIONS FOR AEROSPACE APPLICATIONS WORKSHOP, CCAAW, 2023,
  • [29] Multi-agent Deep Reinforcement Learning for Distributed Energy Management and Strategy Optimization of Microgrid Market
    Fang, Xiaohan
    Zhao, Qiang
    Wang, Jinkuan
    Han, Yinghua
    Li, Yuchun
    SUSTAINABLE CITIES AND SOCIETY, 2021, 74
  • [30] Efficient Large-Scale Fleet Management via Multi-Agent Deep Reinforcement Learning
    Lin, Kaixiang
    Zhao, Renyu
    Xu, Zhe
    Zhou, Jiayu
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1774 - 1783