RegBoost: Enhancing mouse brain image registration using geometric priors and Laplacian interpolation

被引:0
|
作者
Chilaparasetti, Atchuth Naveen [1 ]
Thai, Andy [1 ]
Gao, Pan [2 ]
Xu, Xiangmin [1 ,2 ]
Gopi, M. [1 ]
机构
[1] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92617 USA
[2] Univ Calif Irvine, Sch Med, Dept Anat & Neurobiol, Irvine, CA 92617 USA
基金
美国国家卫生研究院;
关键词
Registration; Geometry processing; Laplacian; Mouse brain; Neuroimaging; FRAMEWORK; FLOWS;
D O I
10.1016/j.neuroimage.2024.120981
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We show in this work that incorporating geometric features and geometry processing algorithms for mouse brain image registration broadens the applicability of registration algorithms and improves the registration accuracy of existing methods. We introduce the preprocessing and postprocessing steps in our proposed framework as RegBoost. We develop a method to align the axis of 3D image stacks by detecting the central planes that pass symmetrically through the image volumes. We then find geometric contours by defining external and internal structures to facilitate image correspondences. We establish Dirichlet boundary conditions at these correspondences and find the displacement map throughout the volume using Laplacian interpolation. We discuss the challenges in our standalone framework and demonstrate how our new approaches can improve the results of existing image registration methods. We expect our new approach and algorithms will have critical applications in brain mapping projects.
引用
收藏
页数:19
相关论文
共 12 条
  • [1] Multimodal image registration using Laplacian commutators
    Zimmer, Veronika A.
    Gonzalez Ballester, Miguel Angel
    Piella, Gemma
    INFORMATION FUSION, 2019, 49 : 130 - 145
  • [2] High-dimensional image registration using symmetric priors
    Ashburner, J
    Andersson, JLR
    Friston, KJ
    NEUROIMAGE, 1999, 9 (06) : 619 - 628
  • [3] Determination of geometric deformations in image registration using geometric and radiometric measurements
    Karsli, Fevzi
    Dihkan, Mustafa
    SCIENTIFIC RESEARCH AND ESSAYS, 2010, 5 (03): : 260 - 274
  • [4] Evaluation of five diffeomorphic image registration algorithms for mouse brain magnetic resonance microscopy
    Fu, Zhenrong
    Lin, Lan
    Tian, Miao
    Wang, Jingxuan
    Zhang, Baiwen
    Chu, Pingping
    Li, Shaowu
    Pathan, Muhammad Mohsin
    Deng, Yulin
    Wu, Shuicai
    JOURNAL OF MICROSCOPY, 2017, 268 (02) : 141 - 154
  • [5] Non-rigid brain image registration using a statistical deformation model
    Wouters, Jeroen
    D'Agostino, Emiliano
    Maes, Frederik
    Vandermeulen, Dirk
    Suetens, Paul
    MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [6] Fast three-dimensional image generation for healthy brain aging using diffeomorphic registration
    Fu, Jingru
    Tzortzakakis, Antonios
    Barroso, Jose
    Westman, Eric
    Ferreira, Daniel
    Moreno, Rodrigo
    HUMAN BRAIN MAPPING, 2023, 44 (04) : 1289 - 1308
  • [7] Multi-resolution CT-MR brain image registration using normalized mutual information
    Lo, CH
    Lu, CC
    CISST'03: PROCEEDING OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS AND TECHNOLOGY, VOLS 1 AND 2, 2003, : 3 - 7
  • [8] Bi-channel image registration and deep-learing segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain
    Wang, Xuechun
    Zeng, Weilin
    Yang, Xiaodan
    Fang, Chunyu
    Han, Yunyun
    Fei, Peng
    ELIFE, 2021, 10 : 1 - 20
  • [9] Performance of a deformable image registration algorithm for CT and cone beam CT using physical multi-density geometric and digital anatomic phantoms
    Ayyalusamy, Anantharaman
    Vellaiyan, Subramani
    Subramanian, Shanmuga
    Satpathy, Shyama
    RADIOLOGIA MEDICA, 2021, 126 (01): : 106 - 116
  • [10] Using Z-Axis Shifting Alignment Co-Registration with Computed Tomography and Positron Emission Tomography Brain Image
    Lo, Rong-Chin
    Cheng, Wen-Yao
    Huang, Wen-Lin
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (07) : 1813 - 1817