Estimation of Turbulent Mixing Factor and Study of Turbulent Flow Structures in Pressurized Water Reactor Sub Channel by Direct Numerical Simulation

被引:0
|
作者
Singh, R. K. [1 ,2 ]
Mukhopadhyay, Deb [1 ]
Khakhar, D. [3 ]
Joshi, J. B. [2 ]
机构
[1] Bhabha Atom Res Ctr, Mumbai 400085, India
[2] Homi Bhabha Natl Inst, Mumbai 400094, India
[3] Indian Inst Technol, Mumbai 400076, India
来源
JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE | 2025年 / 11卷 / 02期
关键词
sub channel analysis; turbulent mixing factor; DNS; reactor thermal hydraulics; turbulent structures; PWR fuel channel; LARGE-EDDY SIMULATION; HEAT-TRANSFER; PART; LES;
D O I
10.1115/1.4066001
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Subchannel analysis codes are presently a requirement for design and safety analysis of nuclear reactors. Among the crucial inputs for these codes, the turbulent mixing factor holds particular significance. However, acquiring this factor through experimental means proves to be a challenging endeavor, primarily due to the necessity for precise pressure equilibrium between subchannels. Consequently, this requirement leads to the undertaking of expensive and intricate experiments for each new reactor or in cases where there are modifications in fuel bundle design. The need for direct numerical simulation (DNS) stems from the challenges and costs involved in experimental techniques, and the uncertainties due to empiricism in computational fluid dynamics (CFD) models. In this study, DNS has been conducted across six Reynolds numbers, ranging from 17,640 to 1.176 x 10(5), in the geometry of a pressurized water reactor (PWR) subchannel. The resulting turbulent flow structures have been computed and their dynamics are examined. Furthermore, this paper presents a methodology for directly calculating the turbulent mixing factor from the fluctuating velocity field obtained from DNS data. The turbulent mixing process has been scrutinized in-depth, and a correlation for the turbulent mixing factor is developed. It is noted that most of the mixing occurs in the near-wall region. The study suggests different mixing factors for mass and momentum mixing. This paper aims to provide a comprehensive insight into the turbulent mixing phenomenon.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Estimation of turbulent energy mixing factor in PWR sub-channel by DNS
    Singh, R. K.
    Mukhopadhyay, Deb
    Khakhar, D.
    Joshi, J. B.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 102 (07) : 2628 - 2644
  • [2] Direct numerical simulation of a wall source dispersion in a turbulent channel flow
    Noormohammadi, Asghar
    Barron, Ronald
    Balachandar, Ram
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [3] Direct Numerical Simulation of a Turbulent Channel Flow with Forchheimer Drag
    Bhattacharjee, Soumak
    Mortikov, Evgeny
    Debolskiy, Andrey
    Kadantsev, Evgeny
    Pandit, Rahul
    Vesala, Timo
    Sahoo, Ganapati
    BOUNDARY-LAYER METEOROLOGY, 2022, 185 (02) : 259 - 276
  • [4] Direct numerical simulation of turbulent flow and heat transfer in a particle-laden turbulent channel flow
    Pei, Yifan
    Chen, Wenlei
    Xiong, Xue-Lu
    Xu, Xinhai
    Zhou, Yi
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 110
  • [5] Direct numerical simulation of turbulent channel flow with spanwise rotation
    Xia, Zhenhua
    Shi, Yipeng
    Chen, Shiyi
    JOURNAL OF FLUID MECHANICS, 2016, 788 : 42 - 56
  • [6] Direct numerical simulation of turbulent mixing of a passive scalar in pipe flow
    Brethouwer, G
    Boersma, BJ
    Pourquié, MBJM
    Nieuwstadt, FTM
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1999, 18 (04) : 739 - 756
  • [7] Direct numerical simulation of turbulent channel flow over porous walls
    Rosti, Marco E.
    Cortelezzi, Luca
    Quadrio, Maurizio
    JOURNAL OF FLUID MECHANICS, 2015, 784 : 396 - 442
  • [8] Numerical simulation of turbulent flow in an eccentric channel
    Candela, Diana Sandoval
    Gomes, Thiago Ferreira
    Goulart, J. N., V
    Mota Anflor, Carla Tatiana
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2020, 83 : 86 - 98
  • [9] Direct numerical simulation of turbulent flow in a vertical channel with buoyancy orthogonal to mean flow
    El-Samni, OA
    Yoon, HS
    Chun, HH
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (07) : 1267 - 1282
  • [10] Direct numerical simulation of turbulent channel flow over random rough surfaces
    Ma, Rong
    Alame, Karim
    Mahesh, Krishnan
    JOURNAL OF FLUID MECHANICS, 2021, 908 (908)