Sensor fault diagnosis in nonlinear stochastic systems: a hybrid system formulation

被引:0
作者
Kwao, Vincent [1 ]
Raptis, Ioannis [1 ]
机构
[1] North Carolina Agr & Tech State Univ, Dept Elect & Comp Engn, Autonomous Robot Syst Lab, 1601 E Market St, Greensboro, NC 27411 USA
关键词
Sensors; fault diagnosis; particle filter; nonlinear stochastic systems; PARTICLE FILTERS; IDENTIFICATION;
D O I
10.1080/00207721.2024.2432956
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a novel Fault Diagnosis (FD) approach for nonlinear stochastic dynamic systems susceptible to multiple, potentially concurrent sensor faults. We formulate the FD problem as a hybrid state estimation problem. To achieve this, a vector of binary state variables is introduced to augment the continuous-valued state variables. These binary variables act as an on-off switching mechanism, providing a framework for independent reasoning about the presence or absence of each sensor fault. Leveraging this hybrid dynamic system formulation, encompassing both binary and continuous-valued states within a single Particle Filter (PF) framework, enables our approach to efficiently co-estimate fault modes alongside dynamic system states. This innovation ensures efficient diagnosis of multiple, potentially concurrent sensor faults while circumventing the need for the cumbersome bank of estimators characteristic of traditional Multiple Model (MM) approaches used for FD. The performance of the proposed algorithm in diagnosing multiple sensor faults is evaluated using a benchmark nonlinear system from the literature. The results demonstrably validate the algorithm's efficacy, solidifying its potential for practical sensor FD applications under conditions of single or multiple faults.
引用
收藏
页码:1755 / 1773
页数:19
相关论文
共 56 条
[1]   Improved Particle Filter Resampling Architectures [J].
Alam, Syed Asad ;
Gustafsson, Oscar .
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2020, 92 (06) :555-568
[2]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[3]  
Candy James V., 2016, Bayesian signal processing: classical, modern, and particle filtering methods, V54
[4]   Deep ROC Analysis and AUC as Balanced Average Accuracy, for Improved Classifier Selection, Audit and Explanation [J].
Carrington, Andre M. ;
Manuel, Douglas G. ;
Fieguth, Paul W. ;
Ramsay, Tim ;
Osmani, Venet ;
Wernly, Bernhard ;
Bennett, Carol ;
Hawken, Steven ;
Magwood, Olivia ;
Sheikh, Yusuf ;
McInnes, Matthew ;
Holzinger, Andreas .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (01) :329-341
[5]   Knowledge-Based Fault Diagnosis in Industrial Internet of Things: A Survey [J].
Chi, Yuanfang ;
Dong, Yanjie ;
Wang, Z. Jane ;
Yu, F. Richard ;
Leung, Victor C. M. .
IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (15) :12886-12900
[6]  
Chivers I, 2015, Intro program fortran, P453, DOI [DOI 10.1007/978-3-319-17701-4, 10.1007/978-3-319-17701-4_23, DOI 10.1007/978-3-319-17701-4_23, 10.1007/978-3-319-17701-4]
[7]   A survey of convergence results on particle filtering methods for practitioners [J].
Crisan, D ;
Doucet, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (03) :736-746
[8]   A Dual Particle Filter-Based Fault Diagnosis Scheme for Nonlinear Systems [J].
Daroogheh, Najmeh ;
Meskin, Nader ;
Khorasani, Khashayar .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018, 26 (04) :1317-1334
[9]   Particle filtering [J].
Djuric, PM ;
Kotecha, JH ;
Zhang, JQ ;
Huang, YF ;
Ghirmai, T ;
Bugallo, MF ;
Míguez, J .
IEEE SIGNAL PROCESSING MAGAZINE, 2003, 20 (05) :19-38
[10]   Sensor fault detection and isolation via networked estimation: rank-deficient dynamical systems [J].
Doostmohammadian, M. ;
Zarrabi, H. ;
Charalambous, T. .
INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (11) :2853-2870