Direct prediction of saturated neoclassical tearing modes in slab using an equilibrium approach

被引:3
作者
Balkovic, E. [1 ]
Loizu, J. [1 ]
Graves, J. P. [1 ]
Huang, Y-m [2 ,3 ]
Smiet, C. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland
[2] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA
[3] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
基金
瑞士国家科学基金会;
关键词
resistive; MHD; canonical; model; nonlinear; evolution; tearing modes; RELAXATION; PLASMAS;
D O I
10.1088/1361-6587/ad97dd
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We demonstrate for the first time that the nonlinear saturation of neoclassical tearing modes (NTMs) can be found directly using a variational principle based on Taylor relaxation, without needing to simulate the intermediate, resistivity-dependent dynamics. As in previous investigations of classical tearing mode saturation (Loizu et al 2020 Phys. Plasmas 27 070701; Loizu and Bonfiglio 2023 J. Plasma Phys. 89 905890507), we make use of Stepped Pressure Equilibrium Code (SPEC) (Hudson et al 2012 Phys. Plasmas 19 112502), an equilibrium solver based on the variational principle of the multi-region relaxed magnetohydrodynamics (MHDs), featuring stepped pressure profiles and arbitrary magnetic topology. We work in slab geometry and employ a simple bootstrap current model Jbs=C del p to study the bootstrap-driven tearing modes, scanning over the asymptotic matching parameter Delta ' and bootstrap current strength. Saturated island widths produced by SPEC agree well with the predictions of an initial value resistive MHDs code (Huang and Bhattacharjee 2016 Astrophys. J. 818 20) while being orders of magnitude faster to calculate. Additionally, we observe good agreement with a simple analytical modified Rutherford equation, without requiring any fitting coefficients. The match is obtained for both linearly unstable classical tearing modes in the presence of bootstrap current, and NTMs, which are linearly stable but nonlinear-unstable due to the effects of the bootstrap current.
引用
收藏
页数:10
相关论文
共 35 条
[11]   Equilibrium and stability of high-β plasmas in Wendelstein 7-AS [J].
Geiger, JE ;
Weller, A ;
Zarnstorff, MC ;
Kolesnichenko, YI .
FUSION SCIENCE AND TECHNOLOGY, 2004, 46 (01) :13-23
[12]   RESISTIVE INSTABILITIES IN A TOKAMAK [J].
GLASSER, AH ;
GREENE, JM ;
JOHNSON, JL .
PHYSICS OF FLUIDS, 1976, 19 (04) :567-574
[13]  
Goldston R.J., 2020, Introduction to plasma physics
[14]  
Günter S, 1999, PLASMA PHYS CONTR F, V41, P767, DOI 10.1088/0741-3335/41/6/306
[15]  
Helander P., 2005, Collisional Transport in Magnetized Plasmas
[16]   STEEPEST-DESCENT MOMENT METHOD FOR 3-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUILIBRIA [J].
HIRSHMAN, SP ;
WHITSON, JC .
PHYSICS OF FLUIDS, 1983, 26 (12) :3553-3568
[17]   The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas [J].
Hoelzl, M. ;
Huijsmans, G. T. A. ;
Pamela, S. J. P. ;
Becoulet, M. ;
Nardon, E. ;
Artola, F. J. ;
Nkonga, B. ;
Atanasiu, C., V ;
Bandaru, V ;
Bhole, A. ;
Bonfiglio, D. ;
Cathey, A. ;
Czarny, O. ;
Dvornova, A. ;
Feher, T. ;
Fil, A. ;
Franck, E. ;
Futatani, S. ;
Gruca, M. ;
Guillard, H. ;
Haverkort, J. W. ;
Holod, I ;
Hu, D. ;
Kim, S. K. ;
Korving, S. Q. ;
Kos, L. ;
Krebs, I ;
Kripner, L. ;
Latu, G. ;
Liu, F. ;
Merkel, P. ;
Meshcheriakov, D. ;
Mitterauer, V ;
Mochalskyy, S. ;
Morales, J. A. ;
Nies, R. ;
Nikulsin, N. ;
Orain, F. ;
Pratt, J. ;
Ramasamy, R. ;
Ramet, P. ;
Reux, C. ;
Saerkimaeki, K. ;
Schwarz, N. ;
Verma, P. Singh ;
Smith, S. F. ;
Sommariva, C. ;
Strumberger, E. ;
van Vugt, D. C. ;
Verbeek, M. .
NUCLEAR FUSION, 2021, 61 (06)
[18]   Stepped pressure profile equilibria in cylindrical plasmas via partial Taylor relaxation [J].
Hole, M. J. ;
Hudson, S. R. ;
Dewar, R. L. .
JOURNAL OF PLASMA PHYSICS, 2006, 72 (06) :1167-1171
[19]   TURBULENT MAGNETOHYDRODYNAMIC RECONNECTION MEDIATED BY THE PLASMOID INSTABILITY [J].
Huang, Yi-Min ;
Bhattacharjee, A. .
ASTROPHYSICAL JOURNAL, 2016, 818 (01)
[20]   Computation of multi-region relaxed magnetohydrodynamic equilibria [J].
Hudson, S. R. ;
Dewar, R. L. ;
Dennis, G. ;
Hole, M. J. ;
McGann, M. ;
von Nessi, G. ;
Lazerson, S. .
PHYSICS OF PLASMAS, 2012, 19 (11)