Direct prediction of saturated neoclassical tearing modes in slab using an equilibrium approach

被引:3
作者
Balkovic, E. [1 ]
Loizu, J. [1 ]
Graves, J. P. [1 ]
Huang, Y-m [2 ,3 ]
Smiet, C. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland
[2] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA
[3] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
基金
瑞士国家科学基金会;
关键词
resistive; MHD; canonical; model; nonlinear; evolution; tearing modes; RELAXATION; PLASMAS;
D O I
10.1088/1361-6587/ad97dd
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We demonstrate for the first time that the nonlinear saturation of neoclassical tearing modes (NTMs) can be found directly using a variational principle based on Taylor relaxation, without needing to simulate the intermediate, resistivity-dependent dynamics. As in previous investigations of classical tearing mode saturation (Loizu et al 2020 Phys. Plasmas 27 070701; Loizu and Bonfiglio 2023 J. Plasma Phys. 89 905890507), we make use of Stepped Pressure Equilibrium Code (SPEC) (Hudson et al 2012 Phys. Plasmas 19 112502), an equilibrium solver based on the variational principle of the multi-region relaxed magnetohydrodynamics (MHDs), featuring stepped pressure profiles and arbitrary magnetic topology. We work in slab geometry and employ a simple bootstrap current model Jbs=C del p to study the bootstrap-driven tearing modes, scanning over the asymptotic matching parameter Delta ' and bootstrap current strength. Saturated island widths produced by SPEC agree well with the predictions of an initial value resistive MHDs code (Huang and Bhattacharjee 2016 Astrophys. J. 818 20) while being orders of magnitude faster to calculate. Additionally, we observe good agreement with a simple analytical modified Rutherford equation, without requiring any fitting coefficients. The match is obtained for both linearly unstable classical tearing modes in the presence of bootstrap current, and NTMs, which are linearly stable but nonlinear-unstable due to the effects of the bootstrap current.
引用
收藏
页数:10
相关论文
共 35 条
[1]   Computation of multi-region, relaxed magnetohydrodynamic equilibria with prescribed toroidal current profile [J].
Baillod, A. ;
Loizu, J. ;
Qu, Z. S. ;
Kumar, A. ;
Graves, J. P. .
JOURNAL OF PLASMA PHYSICS, 2021, 87 (04)
[2]  
Balkovic E., 2024, Zenodo
[3]   Introduction to magnetic helicity [J].
Berger, MA .
PLASMA PHYSICS AND CONTROLLED FUSION, 1999, 41 :B167-B175
[4]   Ideal saturated MHD helical structures in axisymmetric hybrid plasmas [J].
Brunetti, D. ;
Graves, J. P. ;
Cooper, W. A. ;
Terranova, D. .
NUCLEAR FUSION, 2014, 54 (06)
[5]   Tokamak Magnetohydrodynamic Equilibrium States with Axisymmetric Boundary and a 3D Helical Core [J].
Cooper, W. A. ;
Graves, J. P. ;
Pochelon, A. ;
Sauter, O. ;
Villard, L. .
PHYSICAL REVIEW LETTERS, 2010, 105 (03)
[6]   ON PARTIAL DIFFERENCE EQUATIONS OF MATHEMATICAL PHYSICS [J].
COURANT, R ;
FRIEDRICHS, K ;
LEWY, H .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1967, 11 (02) :215-+
[7]   Magnetic well scan and confinement in the TJ-II stellarator [J].
de Aguilera, Adriana M. ;
Castejon, Francisco ;
Ascasibar, Enrique ;
Blanco, Emilio ;
De la Cal, Eduardo ;
Hidalgo, Carlos ;
Liu, Bing ;
Lopez-Fraguas, Antonio ;
Medina, Francisco ;
Antonia Ochando, Maria ;
Pastor, Ignacio ;
Pedrosa, Maria Angeles ;
Van Milligen, Boudewijn ;
Velascoe, Jose Luis .
NUCLEAR FUSION, 2015, 55 (11)
[8]   Minimally Constrained Model of Self-Organized Helical States in Reversed-Field Pinches [J].
Dennis, G. R. ;
Hudson, S. R. ;
Terranova, D. ;
Franz, P. ;
Dewar, R. L. ;
Hole, M. J. .
PHYSICAL REVIEW LETTERS, 2013, 111 (05)
[9]   Simple and rigorous solution for the nonlinear tearing mode [J].
Escande, DF ;
Ottaviani, M .
PHYSICS LETTERS A, 2004, 323 (3-4) :278-284