High Purcell Enhancement in Quantum-Dot Hybrid Circular Bragg Grating Cavities for GHz Clock Rate Generation of Indistinguishable Photons

被引:5
作者
Rickert, Lucas [1 ]
Vajner, Daniel A. [1 ]
von Helversen, Martin [1 ]
Schall, Johannes [1 ]
Rodt, Sven [1 ]
Reitzenstein, Stephan [1 ]
Liu, Hanqing [2 ,3 ]
Li, Shulun [2 ,3 ]
Ni, Haiqiao [2 ,3 ]
Niu, Zhichuan [2 ,3 ]
Heindel, Tobias [1 ]
机构
[1] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany
[2] Chinese Acad Sci, Inst Semicond, Key Lab Optoelect Mat & Devices, Beijing 100083, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
关键词
semiconductor quantum dots; circular Bragg grating cavity; deterministic integration; Purcell enhancement; single-photon source; two-photon indistinguishability; GHz clock rates; LIGHT-SOURCES; DESIGN;
D O I
10.1021/acsphotonics.4c01873
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present Purcell-enhanced (F P > 25) semiconductor InAs quantum dot decay times of T 1 < 30 ps, enabled by deterministic hybrid circular Bragg gratings (hCBGs). We investigate the benefits of these short T 1-times on the two-photon indistinguishability for quasi-resonant and strictly resonant excitation and observe visibilities of >= 96% at 12.5 ns time delay of consecutively emitted photons. The strongly Purcell-enhanced decay times enable a high degree of indistinguishability for elevated temperatures of up to 30 K and, moreover, allow for excitation of up to 1.28 GHz repetition rate. Our work highlights the prospects of highly Purcell-enhanced solid-state quantum emitters for applications in quantum information and technologies operating at GHz clock rates.
引用
收藏
页码:464 / 475
页数:12
相关论文
共 64 条
[1]  
Aaronson S, 2011, ACM S THEORY COMPUT, P333
[2]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/NPHOTON.2016.186, 10.1038/nphoton.2016.186]
[3]   Entangled photon pairs from semiconductor quantum dots [J].
Akopian, N ;
Lindner, NH ;
Poem, E ;
Berlatzky, Y ;
Avron, J ;
Gershoni, D ;
Gerardot, BD ;
Petroff, PM .
PHYSICAL REVIEW LETTERS, 2006, 96 (13)
[4]   Gigahertz-Clocked Teleportation of Time-Bin Qubits with a Quantum Dot in the Telecommunication C Band [J].
Anderson, M. ;
Mueller, T. ;
Skiba-Szymanska, J. ;
Krysa, A. B. ;
Huwer, J. ;
Stevenson, R. M. ;
Heffernan, J. ;
Ritchie, D. A. ;
Shields, A. J. .
PHYSICAL REVIEW APPLIED, 2020, 13 (05)
[5]   Post-Selected Indistinguishable Photons from the Resonance Fluorescence of a Single Quantum Dot in a Microcavity [J].
Ates, S. ;
Ulrich, S. M. ;
Reitzenstein, S. ;
Loeffler, A. ;
Forchel, A. ;
Michler, P. .
PHYSICAL REVIEW LETTERS, 2009, 103 (16)
[6]   High-Performance Single-Photon Sources at Telecom Wavelength Based on Broadband Hybrid Circular Bragg Gratings [J].
Barbiero, Andrea ;
Huwer, Jan ;
Skiba-Szymanska, Joanna ;
Ellis, David J. P. ;
Stevenson, R. Mark ;
Mueller, Tina ;
Shooter, Ginny ;
Goff, Lucy E. ;
Ritchie, David A. ;
Shields, Andrew J. .
ACS PHOTONICS, 2022, 9 (09) :3060-3066
[7]   Regulated and entangled photons from a single quantum dot [J].
Benson, O ;
Santori, C ;
Pelton, M ;
Yamamoto, Y .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2513-2516
[8]   Nanocavity enhanced photon coherence of solid-state quantum emitters operating up to 30 K [J].
Brash, A. J. ;
Iles-Smith, J. .
MATERIALS FOR QUANTUM TECHNOLOGY, 2023, 3 (04)
[9]   Optical properties of circular Bragg gratings with labyrinth geometry to enable electrical contacts [J].
Buchinger, Quirin ;
Betzold, Simon ;
Hoefling, Sven ;
Huber-Loyola, Tobias .
APPLIED PHYSICS LETTERS, 2023, 122 (11)
[10]   Interference and correlation of two independent photons [J].
Bylander, J ;
Robert-Philip, I ;
Abram, I .
EUROPEAN PHYSICAL JOURNAL D, 2003, 22 (02) :295-301