Comprehensive regulation strategies for gel electrolytes in aqueous zinc-ion batteries

被引:1
|
作者
Yang, Jiaqi [1 ,4 ]
Weng, Chaocang [1 ,4 ]
Sun, Peng [2 ]
Yin, Ying [3 ]
Xu, Min [1 ,4 ]
Pan, Likun [1 ,4 ]
Li, Jinliang [2 ]
机构
[1] East China Normal Univ, Sch Phys & Elect Sci, Shanghai Key Lab Magnet Resonance, Shanghai 200241, Peoples R China
[2] Jinan Univ, Guangdong Prov Engn Technol Res Ctr Vacuum Coating, Dept Phys, Siyuan Lab,Guangdong Prov Key Lab Nanophoton Manip, Guangzhou 510632, Peoples R China
[3] Beijing Inst Technol, Shenzhen Automot Res Inst, Shenzhen 518118, Guangdong, Peoples R China
[4] East China Normal Univ, Inst Magnet Resonance & Mol Imaging Med, Shanghai 200241, Peoples R China
关键词
Aqueous zinc-ion batteries; Gel polymer electrolytes; Flexible energy storage; HYDROGEL ELECTROLYTE; ANODE; INTERFACE;
D O I
10.1016/j.ccr.2025.216475
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Aqueous zinc-ion batteries (AZIBs) offer a promising energy storage option thanks to their safety, affordability, and stable electrochemical properties. Nevertheless, commercialization remains hindered by challenges including zinc dendrite growth, electrolyte-electrode interface instability, and performance deterioration caused by the high activity of water. Gel polymer electrolytes (GPEs) have demonstrated significant improvements in both performance and safety of AZIBs, attributed to their flexibility and superior interfacial contact properties. This review elucidates the transformative potential of GPEs, focusing on strategies including the construction of selective ion channels, reduction of water activity, optimization of solvation structures, and stabilization of the electrode-electrolyte interface. Additionally, this review analyzes the molecular-level mechanisms underlying these strategies and explores the functional versatility of GPEs in flexible energy storage devices. The findings in this work underscore the crucial role of GPEs in overcoming key obstacles in AZIBs technology, paving the way for commercial applications and steering future research toward the creation of high-performance, safe, and eco- friendly AZIBs.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Rechargeable Aqueous Zinc-Ion Batteries with Mild Electrolytes: A Comprehensive Review
    Kang, Litao
    Cui, Mangwei
    Zhang, Zhongtao
    Jiang, Fuyi
    BATTERIES & SUPERCAPS, 2020, 3 (10) : 966 - 1005
  • [2] Influence of Water on Gel Electrolytes for Zinc-Ion Batteries
    Liu, Xiangjie
    Li, Xin
    Yang, Xiaotong
    Lu, Jingqi
    Zhang, Xuan
    Yuan, Du
    Zhang, Yizhou
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (04)
  • [3] The Gel-State Electrolytes in Zinc-Ion Batteries
    Hu, Fulong
    Li, Maoyun
    Gao, Guowei
    Fan, Huiqing
    Ma, Longtao
    BATTERIES-BASEL, 2022, 8 (11):
  • [4] Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries
    Huang, Shuo
    Zhu, Jiacai
    Tian, Jinlei
    Niu, Zhiqiang
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (64) : 14480 - 14494
  • [5] Challenges and strategies for zinc anodes in aqueous Zinc-Ion batteries
    Wang, Mingming
    Meng, Yahan
    Li, Xiang
    Qi, Jintao
    Li, Apeng
    Huang, Shaoming
    CHEMICAL ENGINEERING JOURNAL, 2025, 507
  • [6] Challenges and strategies of zinc anode for aqueous zinc-ion batteries
    He, Weixin
    Zuo, Shiyong
    Xu, Xijun
    Zeng, Liyan
    Liu, Li
    Zhao, Weiming
    Liu, Jun
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (05) : 2201 - 2217
  • [7] Recent Advances in Electrolytes for "Beyond Aqueous" Zinc-Ion Batteries
    Lv, Yanqun
    Xiao, Ying
    Ma, Longtao
    Zhi, Chunyi
    Chen, Shimou
    ADVANCED MATERIALS, 2022, 34 (04)
  • [8] Anode optimization strategies for aqueous zinc-ion batteries
    Zhang, Yiyang
    Zheng, Xiaobo
    Wang, Nana
    Lai, Wei-Hong
    Liu, Yong
    Chou, Shu-Lei
    Liu, Hua-Kun
    Dou, Shi-Xue
    Wang, Yun-Xiao
    CHEMICAL SCIENCE, 2022, 13 (48) : 14246 - 14263
  • [9] Challenges and strategies for ultrafast aqueous zinc-ion batteries
    Qiao-Nan Zhu
    Zhen-Ya Wang
    Jia-Wei Wang
    Xiao-Yu Liu
    Dan Yang
    Li-Wei Cheng
    Meng-Yao Tang
    Yu Qin
    Hua Wang
    RareMetals, 2021, 40 (02) : 309 - 328
  • [10] Nanostructure Design Strategies for Aqueous Zinc-Ion Batteries
    Ling, Wei
    Wang, Panpan
    Chen, Zhe
    Wang, Hua
    Wang, Jiaqi
    Ji, Zhenyuan
    Fei, Jinbo
    Ma, Zhiyuan
    He, Ning
    Huang, Yan
    CHEMELECTROCHEM, 2020, 7 (14) : 2957 - 2978