Facile Tensile Testing Platform for In Situ Transmission Electron Microscopy of Nanomaterials

被引:0
作者
Sari, Bengisu [1 ,2 ]
Dandu, Medha [1 ]
Wood, Nathan [3 ]
Hochhalter, Jacob [3 ]
Johnson, Amalya C. [4 ]
Doeff, Marca [5 ]
Liu, Fang [6 ]
Raja, Archana [1 ,7 ]
Scott, Mary [1 ,2 ]
Dhall, Rohan [1 ]
Warren, Roseanne [3 ]
机构
[1] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
[4] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[5] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[6] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[7] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
2D materials; electron diffraction; finite element analysis; tensile testing; transmission electron microscopy; 2D MATERIALS; GOLD-FILMS; STRAIN; DEFORMATION; MONOLAYER; STRENGTH; HOLDER;
D O I
10.1002/admi.202400750
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In situ tensile testing using transmission electron microscopy (TEM) is a powerful technique to probe structure-property relationships of materials at the atomic scale. In this work, a facile tensile testing platform for in situ characterization of materials inside a transmission electron microscope is demonstrated. The platform consists of: 1) a commercially available, flexible, electron-transparent substrate (e.g., TEM grid) integrated with a conventional tensile testing holder, and 2) a finite element simulation providing quantification of specimen-applied strain. The flexible substrate (carbon support film of the TEM grid) mitigates strain concentrations usually found in free-standing films and enables in situ straining experiments to be performed on materials that cannot undergo localized thinning or focused ion beam lift-out. The finite element simulation enables direct correlation of holder displacement with sample strain, providing upper and lower bounds of expected strain across the substrate. The tensile testing platform is validated for three disparate material systems: sputtered gold-palladium, few-layer transferred tungsten disulfide, and electrodeposited lithium, by measuring lattice strain from experimentally recorded electron diffraction data. The results show good agreement between experiment and simulation, providing confidence in the ability to transfer strain from holder to sample and relate TEM crystal structural observations with material mechanical properties.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Electron diffraction using transmission electron microscopy [J].
Bendersky, LA ;
Gayle, FW .
JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2001, 106 (06) :997-1012
[42]   Advances in Transmission Electron Microscopy: In Situ Straining and In Situ Compression Experiments on Metallic Glasses [J].
De Hosson, Jeff Th. M. .
MICROSCOPY RESEARCH AND TECHNIQUE, 2009, 72 (03) :250-260
[43]   In situ nanomechanical testing of twinned metals in a transmission electron microscope [J].
Li, Nan ;
Wang, Jiangwei ;
Mao, Scott ;
Wang, Haiyan .
MRS BULLETIN, 2016, 41 (04) :305-313
[44]   In situ transmission electron microscopy studies of the solid-liquid interface [J].
Howe, JM ;
Saka, H .
MRS BULLETIN, 2004, 29 (12) :951-957
[45]   In situ transmission electron microscopy mechanical deformation and fracture of a silver nanowire [J].
Alducin, Diego ;
Borja, Raul ;
Ortega, Eduardo ;
Velazquez-Salazar, J. Jesus ;
Covarrubias, Mario ;
Santoyo, Fernando Mendoza ;
Bazan-Diaz, Lourdes ;
Sanchez, John Eder ;
Torres, Nayely ;
Ponce, Arturo ;
Jose-Yacaman, Miguel .
SCRIPTA MATERIALIA, 2016, 113 :63-67
[46]   Source-controlled yield and hardening of Cu(100) studied by in situ transmission electron microscopy [J].
Kiener, D. ;
Minor, A. M. .
ACTA MATERIALIA, 2011, 59 (04) :1328-1337
[47]   Transmission electron microscopy with in-situ ion irradiation: Facilities and community [J].
Hattar, Khalid ;
Kothari, Rishabh ;
Chen, Wei-Ying ;
Daymond, Mark R. ;
Eswara, Santhana ;
Field, Kevin G. ;
Gentils, Aurelie ;
Hiroaki, Abe ;
Jones, Lewys ;
Kazuto, Arakawa ;
Miyamoto, Mitsutaka ;
Ran, Guang ;
Shibayama, Tamaki ;
Smyth, Christopher M. ;
Was, Gary S. ;
Hinks, Jonathan A. .
VACUUM, 2025, 240
[48]   Anomalous desorption of copper oxide observed by in situ transmission electron microscopy [J].
Yang, JC ;
Yeadon, M ;
Olynick, D ;
Gibson, JM .
MICROSCOPY AND MICROANALYSIS, 1997, 3 (02) :121-125
[49]   In situ preparation of colloidal iron by microwave irradiation for transmission electron microscopy [J].
Nakatani, S ;
Naito, I ;
Momota, R ;
Hinenoya, N ;
Horiuchi, K ;
Nishida, K ;
Ohtsuka, A .
ACTA MEDICA OKAYAMA, 2006, 60 (01) :59-64
[50]   In Situ Scanning Transmission Electron Microscopy Observations of Fracture at the Atomic Scale [J].
Huang, Lingli ;
Zheng, Fangyuan ;
Deng, Qingming ;
Quoc Huy Thi ;
Wong, Lok Wing ;
Cai, Yuan ;
Wang, Ning ;
Lee, Chun-Sing ;
Lau, Shu Ping ;
Chhowalla, Manish ;
Li, Ju ;
Thuc Hue Ly ;
Zhao, Jiong .
PHYSICAL REVIEW LETTERS, 2020, 125 (24)