Facile Tensile Testing Platform for In Situ Transmission Electron Microscopy of Nanomaterials

被引:0
|
作者
Sari, Bengisu [1 ,2 ]
Dandu, Medha [1 ]
Wood, Nathan [3 ]
Hochhalter, Jacob [3 ]
Johnson, Amalya C. [4 ]
Doeff, Marca [5 ]
Liu, Fang [6 ]
Raja, Archana [1 ,7 ]
Scott, Mary [1 ,2 ]
Dhall, Rohan [1 ]
Warren, Roseanne [3 ]
机构
[1] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
[4] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[5] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[6] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[7] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA
来源
ADVANCED MATERIALS INTERFACES | 2024年
基金
美国国家科学基金会;
关键词
2D materials; electron diffraction; finite element analysis; tensile testing; transmission electron microscopy; 2D MATERIALS; GOLD-FILMS; STRAIN; DEFORMATION; MONOLAYER; STRENGTH; HOLDER;
D O I
10.1002/admi.202400750
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In situ tensile testing using transmission electron microscopy (TEM) is a powerful technique to probe structure-property relationships of materials at the atomic scale. In this work, a facile tensile testing platform for in situ characterization of materials inside a transmission electron microscope is demonstrated. The platform consists of: 1) a commercially available, flexible, electron-transparent substrate (e.g., TEM grid) integrated with a conventional tensile testing holder, and 2) a finite element simulation providing quantification of specimen-applied strain. The flexible substrate (carbon support film of the TEM grid) mitigates strain concentrations usually found in free-standing films and enables in situ straining experiments to be performed on materials that cannot undergo localized thinning or focused ion beam lift-out. The finite element simulation enables direct correlation of holder displacement with sample strain, providing upper and lower bounds of expected strain across the substrate. The tensile testing platform is validated for three disparate material systems: sputtered gold-palladium, few-layer transferred tungsten disulfide, and electrodeposited lithium, by measuring lattice strain from experimentally recorded electron diffraction data. The results show good agreement between experiment and simulation, providing confidence in the ability to transfer strain from holder to sample and relate TEM crystal structural observations with material mechanical properties.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] In situ Atmospheric Transmission Electron Microscopy of Catalytic Nanomaterials
    Dai, Sheng
    Gao, Wenpei
    Graham, George W.
    Pan, Xiaoqing
    MRS ADVANCES, 2018, 3 (39): : 2297 - 2303
  • [2] In Situ Transmission Electron Microscopy Investigation of Thermal Nanomaterials
    Hu, J. J.
    Hong, Y.
    Su, M.
    Gschwender, L.
    Voevodin, A. A.
    THERMAL CONDUCTIVITY 30:THERMAL EXPANSION 18, 2010, 30 : 924 - 924
  • [3] In situ Atmospheric Transmission Electron Microscopy of Catalytic Nanomaterials
    Sheng Dai
    Wenpei Gao
    George W. Graham
    Xiaoqing Pan
    MRS Advances, 2018, 3 (39) : 2297 - 2303
  • [4] In situ investigation of the mechanical properties of nanomaterials by transmission electron microscopy
    Jun Sun
    Feng Xu
    Li-Tao Sun
    Acta Mechanica Sinica, 2012, 28 : 1513 - 1527
  • [5] In situ investigation of the mechanical properties of nanomaterials by transmission electron microscopy
    Sun, Jun
    Xu, Feng
    Sun, Li-Tao
    ACTA MECHANICA SINICA, 2012, 28 (06) : 1513 - 1527
  • [6] In situ investigation of the mechanical properties of nanomaterials by transmission electron microscopy
    Jun Sun
    Feng Xu
    Li-Tao Sun
    Acta Mechanica Sinica, 2012, 28 (06) : 1513 - 1527
  • [7] Pseudoelastic deformation and size effects during in situ transmission electron microscopy tensile testing of NiTi
    Manchuraju, S.
    Kroeger, A.
    Somsen, C.
    Dlouhy, A.
    Eggeler, G.
    Sarosi, P. M.
    Anderson, P. M.
    Mills, M. J.
    ACTA MATERIALIA, 2012, 60 (6-7) : 2770 - 2777
  • [8] In situ electron microscopy tensile testing of constrained carbon nanofibers
    Ramachandramoorthy, Rajaprakash
    Beese, Allison
    Espinosa, Horacio
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 149 : 452 - 458
  • [9] Transmission electron microscopy of nanomaterials
    Neogy, S
    Savalia, RT
    Tewari, R
    Srivastava, D
    Dey, GK
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2006, 44 (02) : 119 - 124
  • [10] Electrospun advanced nanomaterials for in situ transmission electron microscopy: Progress and perspectives
    Zhao, Jingyue
    Li, Zulin
    Lv, Shiwen
    Wang, Manxi
    Li, Chuanping
    Li, Xuan
    Chen, Hongyang
    Li, Manxian
    Chen, Xiaochuan
    Wang, Feifeng
    Fan, Weiwei
    Wu, Junxiong
    Wang, Ziqiang
    Li, Xiaoyan
    Chen, Yuming
    INFOMAT, 2023, 5 (12)