Effects of nanoprecipitates on mechanical properties in an ultra-high strength maraging stainless steel

被引:2
作者
Jiang, Weiguo [1 ]
Li, Junpeng [1 ]
Zhang, Yang [1 ]
Li, Xinghao [1 ]
Luan, Junhua [2 ]
Jiao, Zengbao [3 ]
Liu, Chain Tsuan [2 ]
Zhang, Zhongwu [1 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin 150001, Peoples R China
[2] City Univ Hong Kong, Dept Mech Engn, Interuniv Atom Probe Tomog Unit 3D, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Peoples R China
关键词
Maraging stainless steel; Nanoprecipitates; Tensile properties; Strengthening mechanism; TEMPERING TEMPERATURE; PRECIPITATION; MICROSTRUCTURE; DUCTILITY; BEHAVIOR; MORPHOLOGY; EVOLUTION; STRAIN; ALLOYS; MODEL;
D O I
10.1016/j.matchar.2025.114837
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new maraging stainless steel (MSS) with excellent balance of strength and ductility was designed. The ultimate tensile strength (UTS) of the MSS after aging at 500 degrees C for 100 h reaches 2068 MPa, with a total elongation of 9.3 % and a uniform elongation of 3.1 %. Compared with the unaged MSS, the MSS steel aged for 100 h showed an increase of 783 MPa in UTS, with only a slight reduction in ductility. After aging for 100 h, the sizes of Fe2Mo, Ni3Nb, and alpha'-Cr phases are 21.5 nm, 6.6 nm, and 5.4 nm, respectively. Long time aging for 100 h, Fe2Mo grows significantly along with a large misfit of 16 % between martensite matrix and Fe2Mo. Upon deformation, the dislocation density in MSS aged for 100 h increases from 22.9 x 1014 m- 2 to 37.8 x 1014 m- 2, resulting in a high strain hardening rate. In contrast, the dislocation density in the unaged MSS increases slightly from 33.4 x 1014 m- 2 to 34.1 x 1014 m- 2.
引用
收藏
页数:15
相关论文
共 70 条
[11]   Predicting microstructure and strength of maraging steels: Elemental optimisation [J].
Galindo-Nava, E. I. ;
Rainforth, W. M. ;
Rivera-Diaz-del-Castillo, P. E. J. .
ACTA MATERIALIA, 2016, 117 :270-285
[12]   A model for the microstructure behaviour and strength evolution in lath martensite [J].
Galindo-Nava, E. I. ;
Rivera-Diaz-del-Castillo, P. E. J. .
ACTA MATERIALIA, 2015, 98 :81-93
[13]   Achieving ultrahigh strength and ductility in high-entropy alloys via dual precipitation [J].
Guo, J. M. ;
Zhou, B. C. ;
Qiu, S. ;
Kong, H. J. ;
Niu, M. C. ;
Luan, J. H. ;
Zhang, T. L. ;
Wu, H. ;
Jiao, Z. B. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 166 :67-77
[14]   Pursuing ultrastrong and ductile medium entropy alloys via architecting nanoprecipitates-enhanced hierarchical heterostructure [J].
Guoa, S. K. ;
Ma, Z. L. ;
Xiaa, G. H. ;
Li, X. Y. ;
Xua, Z. Q. ;
Li, W. Z. ;
Jina, X. Y. ;
Cheng, X. W. .
ACTA MATERIALIA, 2024, 263
[15]   Significantly ameliorating room-temperature brittleness of refractory high-entropy alloys via in situ heterogeneous structure [J].
Han, Dong ;
Yang, Baijun ;
Xu, Wenlong ;
Yang, Hongwang ;
Han, Guofeng ;
Wang, Xiaoming ;
Wang, Jianqiang .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 193 :1-17
[16]   High dislocation density-induced large ductility in deformed and partitioned steels [J].
He, B. B. ;
Hu, B. ;
Yen, H. W. ;
Cheng, G. J. ;
Wang, Z. K. ;
Luo, H. W. ;
Huang, M. X. .
SCIENCE, 2017, 357 (6355) :1029-1032
[17]   A precipitation-hardened high-entropy alloy with outstanding tensile properties [J].
He, J. Y. ;
Wang, H. ;
Huang, H. L. ;
Xu, X. D. ;
Chen, M. W. ;
Wu, Y. ;
Liu, X. J. ;
Nieh, T. G. ;
An, K. ;
Lu, Z. P. .
ACTA MATERIALIA, 2016, 102 :187-196
[18]   Characteristic dislocation slip behavior in polycrystalline HfNbTiZr refractory medium entropy alloy [J].
He, Qian ;
Yoshida, Shuhei ;
Okajo, Shinji ;
Tanaka, Masaki ;
Tsuji, Nobuhiro .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 210 :29-39
[19]   HRTEM investigations on nano precipitates in Custom 475 maraging stainless steel [J].
Huang, Cheng-Yao ;
Yen, Hung-Wei .
MATERIALS CHARACTERIZATION, 2021, 178
[20]   Cu-rich nanoprecipitates modified using Al to simultaneously enhance the strength and ductility of ferritic stainless steel [J].
Jiang, Mingkun ;
Han, Ying ;
Chen, Xiangyi ;
Zu, Guoqing ;
Zhu, Weiwei ;
Ran, Xu .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 121 :93-98